granger¶
Purpose¶
Computes the tests for Granger causality of specified variables.
Format¶
-
GC_out =
granger(data, test[, pmax, ic, Nboot, vnames])¶ Parameters: - data (Txk matrix) – Data to be tested with k individual variables each in a separate column.
- test (Scalar) –
Test option for Granger causality
0 Granger causality. 1 Toda & Yamamoto 2 Single Fourier-frequency Granger causality. 4 Single Fourier frequency Toda & Yamamoto. 5 Cumulative Fourier-frequency Toda & Yomamoto - pmax (Scalar) – Optional, maximum number of lags. Default = 8.
- ic (Scalar) –
Optional, the information criterion used for choosing lags.
1 Akaike. 2 Schwarz. 3 t-stat significance. Default = 2.
- Nboot (Scalar) – Number of bootstrap replications.
- vnames (String array) – Variable names. Default = dataframe variable names OR “X1”$|”X2”.
Returns: GC_out (Kx5 Matrix) – Results matrix containing Wald stat~P-values~Bootstrap P-values~Lags~Frequency
Examples¶
library tspdlib;
// Load data matrix
GCdata = loadd(getGAUSSHome() $+ "pkgs/tspdlib/examples/TScaus.dat");
data = ln(GCdata);
// Toda & Yamamoto test
test = 1;
// Run test
GC_out = granger(data, test);
Source¶
gctests.src