cmlmtKernelDensity ===================== Purpose ------- To compute kernel density estimate and plot for a given dataset using specified kernel types and parameters. Format ------ .. function:: out = cmlmtKernelDensity(dataset, c0) :param dataset: Name of the GAUSS dataset. :type dataset: string :param c0: Instance of :class:`cmlmtKernelDensityControl` structure with detailed configuration. .. list-table:: :widths: auto * - c0.varNames - Kx1 string array, names of selected columns for density estimation. * - c0.Kernel - Kx1 vector specifying the type of kernel used for each parameter. Options include NORMAL (1), EPAN (2), BIWGT (3), TRIANG (4), RECTANG (5), and TNORMAL (6). A scalar value applies the same kernel to all parameters. Default: NORMAL. * - c0.NumPoints - Scalar defining the number of points to compute for plots. * - c0.EndPoints - Kx2 matrix specifying lower and upper endpoints of density for each parameter. A 1x2 matrix applies the same endpoints to all parameters. Defaults to the minimum and maximum of parameter values. * - c0.Smoothing - Smoothing coefficients for the density estimation, applicable as a Kx1 vector, Nx1 vector, or NxK matrix. A scalar value applies the same coefficient across plots. Default: 0 (automatic calculation). * - c0.Truncate - Kx2 matrix or 1x2 matrix specifying lower and upper truncation limits for the TNORMAL kernel. Defaults to minimum and maximum values respectively. :type c0: struct :return out: An instance of the :class:`cmlmtKernelDensityResults` structure. .. list-table:: :widths: auto * - out.px - c0.NumPointsx1 vector, abscissae for the density plot. * - out.py - c0.NumPointsx1 vector, ordinates for the density plot. * - out.sm - Smoothing coefficients used, returned as Kx1, NxK, or Nx1, based on input configuration. :rtype out: struct Example ------- :: new; library cmlmt; // Specify the dataset dataset = getGAUSSHome("pkgs/cmlmt/examples/cmlmttobit.dat"); // Initialize the control structure with default settings struct cmlmtKernelDensityControl c0; c0 = cmlmtKernelDensityControlCreate(); // Customize the control structure c0.varNames = "Y"; // Use normal kernel c0.Kernel = 1; // Number of points c0.NumPoints = 100; // Endpoints c0.EndPoints = {-3 3}; // Let the function compute the smoothing coefficient c0.Smoothing = 0; // Compute the kernel density estimate and plot struct cmlmtKernelDensityResults out; out = cmlmtKernelDensity(dataset, c0); Remarks ------- - The function generates kernel density plots of the selected parameters using the specified configurations. This method is useful for visualizing the distribution of parameters or data points within a dataset.