fourier_wadf#
Purpose#
Computes the wavelet Augmented Dickey-Fuller unit root test with flexible Fourier form structural breaks.
Format#
- { FWADF, f, p } = Fourier_WADF(y, model[, pmax, fmax, ic])#
- Parameters:
y (Nx1 matrix) – Dependent variable.
model (Scalar) –
Model to be implemented.
1
Constant
2
Constant and trend
pmax (Scalar) – Optional, maximum number of lags for \(\Delta y\); 0=no lag. Default = 8.
fmax (Scalar) – Optional, maximum number of single Fourier frequency (upper bound is 5). Default = 5.
ic (Scalar) –
Optional, the information criterion used for choosing lags. Default = 3.
1
Akaike.
2
Schwarz.
3
t-stat significance.
- Returns:
FWADF (Scalar) – FWADF(k) statistic.
f (Scalar) – Number of single frequency.
p (Scalar) – number of lags selected by chosen information criterion
Examples#
library tspdlib;
// Load date file
y = loadd(getGAUSSHome() $+ "pkgs/tspdlib/examples/ts_examples.csv", "Y + date($Date, '%b-%y')");
// With constant
model = 1;
// Call test
{ FWADF, f, p } = Fourier_WADF(y, model);
Source#
fourier_wadf.src
See also
Functions fourier_adf()
, fourier_kss()
, fourier_gls()
, fourier_kpss()
, fourier_lm()