gc_tests#
Purpose#
Computes the tests for Granger causality of specified variables.
Format#
- GC_out = GC_tests(data, vnames, pmax, ic, test, Nboot)#
- Parameters:
data (Txk matrix) – Data to be tested with k individual variables each in a separate column.
vnames (String array) – Variable names.
pmax (Scalar) – Maximum number of lags.
ic (Scalar) –
The information criterion used for choosing lags.
1
Akaike.
2
Schwarz.
3
t-stat significance.
test –
Test option for Granger causality
0
Granger causality.
1
Toda & Yamamoto
2
Single Fourier-frequency Granger causality.
4
Single Fourier frequency Toda & Yamamoto.
5
Cumulative Fourier-frequency Toda & Yomamoto
Nboot (Scalar) – Number of bootstrap replications.
- Returns:
GC_out (Kx5 Matrix) – Results matrix containing Wald stat~P-values~Bootstrap P-values~Lags~Frequency
Examples#
library tspdlib;
// Number of bootstrap replications
Nboot= 1000;
// Number of observations
T = 188;
// Number of lags in VAR model
pmax = 12;
// Information criterion
ic = 1;
// Set to perform Granger Causality
test = 0;
// Load data matrix
GCdata = loadd(getGAUSSHome() $+ "pkgs/tspdlib/examples/TScaus.dat");
data = ln(GCdata);
// Variable names
vnames = "y1"$|"y2"$|"y3"$|"y4";
// Toda & Yamamoto test
test = 1;
// Run Granger tests
GC_out = GC_tests(data, vnames, pmax, ic, test, Nboot);
Source#
gctests.src
See also
Functions panel_fisher()
, panel_zhnc()
, panel_surwald()