granger

Purpose

Computes the tests for Granger causality of specified variables.

Format

GC_out = granger(data, test[, pmax, ic, Nboot, vnames])
Parameters:
  • data (Txk matrix) – Data to be tested with k individual variables each in a separate column.
  • test (Scalar) –

    Test option for Granger causality

    0 Granger causality.
    1 Toda & Yamamoto
    2 Single Fourier-frequency Granger causality.
    4 Single Fourier frequency Toda & Yamamoto.
    5 Cumulative Fourier-frequency Toda & Yomamoto
  • pmax (Scalar) – Optional, maximum number of lags. Default = 8.
  • ic (Scalar) –

    Optional, the information criterion used for choosing lags.

    1 Akaike.
    2 Schwarz.
    3 t-stat significance.

    Default = 2.

  • Nboot (Scalar) – Number of bootstrap replications.
  • vnames (String array) – Variable names. Default = dataframe variable names OR “X1”$|”X2”.
Returns:

GC_out (Kx5 Matrix) – Results matrix containing Wald stat~P-values~Bootstrap P-values~Lags~Frequency

Examples

library tspdlib;

// Load data matrix
GCdata = loadd(getGAUSSHome() $+ "pkgs/tspdlib/examples/TScaus.dat");
data   = ln(GCdata);

// Toda & Yamamoto test
test = 1;

// Run test
GC_out = granger(data, test);

Source

gctests.src