sbvar_icss#
Purpose#
Identifies structural breaks in variance using the Iterated Cumulative Sums of Squares (ICSS) algorithm for of Inclan and Tiao (JASA, 1994).
Format#
- { change_point, nbreaks } = sbvar_icss(e[, test, bwl, varm])#
- Parameters:
e (Tx1 vector) – Zero mean stochastic process to be analysed.
test (Scalar) – Optional, the test to be conducted:
bwl (Scalar) – Optional, bandwidth for spectral window. Default = round(4 * (T/100)^(2/9)).
varm (Scalar) –
Optional, long-run consistent variance estimation method. Default = 1.
1
iid
2
Bartlett
3
Quadratic Spectral (QS)
4
SPC with Bartlett (Sul, Phillips & Choi, 2005)
5
SPC with QS
6
Kurozumi with Bartlett
7
Kurozumi with QS
- Returns:
change_point (Vector) – The change points (the first and the last element denotes the first and the last time periods of the time series).
nbreaks (Scalar) – The number of change points.
Examples#
library tspdlib;
// Load S&P data
FRED_API_KEY = "7a756a099f64c52f4657b4accc942137";
x = packr(fred_load("SP500"));
// Compute returns
ret_sp500 = (x[2:rows(x), "SP500"] - x[1:rows(x)-1, "SP500"])./x[1:rows(x)-1, "SP500"];
// Demean the returns
e = ret_sp500 - meanc(ret_sp500);
// Run ICSS test
{ cp, nbre } = sbvar_icss(x[2:rows(x), "date"]~e);
Source#
sbvar_icss.src