garchGJRFit =========== Purpose ------- Estimates asymmetric GJR-GARCH model. Library ------- tsmt Format ------ .. function:: out1 = garchGJRFit(y, p [, q, c0]); out1 = garchGJRFit(dataset, formula, p [, q, c0]); :param y: dependent variables. :type y: Matrix :param x: independent variables. :type x: Matrix :param dataset: name of data set or null string. :type dataset: string :param formula: formula string of the model. E.g. ``"y ~ X1 + X2"`` 'y' is the name of dependent variable, '``X1``' and '``X2``' are names of independent variables; E.g. ``"y ~ ."`` , '.' means including all variables except dependent variable 'y'; :type formula: string :param p: order of the GARCH parameters. :type p: scalar :param q: Optional input. order of the ARCH parameters. :type q: scalar :param c0: Optional input. :class:`garchControl` structure. .. list-table:: :widths: auto * - c0.density - scalar, density of error term: :0: Normal :1: Student's t :3: skew generalized t. * - c0.asymmetry - scalar, if nonzero assymetry terms are added. * - c0.inmean - scalar, GARCH-in-mean, square root of conditional variance is included in the mean equation. * - c0.stConstraintsType - scalar, type of enforcement of stationarity requirements: :1: roots of characteristic polynomial constrained outside unit circle :2: arch, GARCH parameters constrained to sum to less than one and greater than zero :3: none. * - c0.cvConstraintsType - scalar, type of enforcement of nonnegative conditional variances: :0: direct constraints :1: Nelson & Cao constraints * - c0.covType - scalar, type of covariance matrix of parameters: :1: ML :2: QML :3: none :type c0: Optional input :return out1: garchEstimation structure containing the following members: .. list-table:: :widths: auto * - out1.aic - scalar, Akiake criterion. * - out1.bic - scalar, Bayesian information criterion. * - out1.lrs - scalar, likelihood ratio statistic. * - out1.numObs - scalar, number of observations. * - out1.df - scalar, degrees of freedom. * - out1.par - instance of PV structure containing parameter estimates. * - out1.retcode - scalar, return code: :1: normal convergence. :2: forced exit. :3: function calculation failed. :4: gradient calculation failed. :5: Hessian calculation failed. :6: line search failed. :7: error with constraints. :8: function complex. * - out1.moment - KxK matrix, moment matrix of parameter estimates. * - out1.climits - Kx2 matrix, confidence limits. :rtype out1: struct Example ------- :: new; cls,; library tsmt; y = loadd( getGAUSSHome() $+ "pkgs/tsmt/examples/gjrgarch.dat"); // GARCH control structure struct garchControl c0; c0 = garchControlCreate; c0.cmlmtControlproc = &prc; // Covariance type c0.covtype = 2; // Control cmlmt estimation proc prc(struct cmlmtControl c0); c0.printiters = 10; c0.switch = 0; c0.algorithm = 1; retp(c0); endp; // GARCH order p = 1; // ARCH order q = 1; // Estimate model struct garchEstimation f0; f0 = garchgjrFit(y, p, q, c0); Source ------ tsgarch.src .. seealso:: Functions :func:`garchFit`, :func:`garchMFit`