adf#
Purpose#
Computes the Augmented Dickey-Fuller unit root test.
Format#
- { tstat, lags, cv } = adf(y, model[, pmax, ic])#
- Parameters:
y (Nx1 matrix) – Time series data to be tested.
model (Scalar) –
Model to be implemented.
0
No constant or trend.
1
Constant.
2
Constant and trend.
pmax (Scalar) – Optional, the maximum number of lags for \(\Delta y\). Default = 8.
ic (Scalar) –
Optional, the information criterion used for choosing lags. Default = 3.
1
Akaike.
2
Schwarz.
3
t-stat significance.
- Returns:
tstat (Scalar) – Dickey-Fuller test statistic.
lags (Scalar) – Number of lags selected by chosen information criterion.
cv (Vector) – 1%, 5%, and 10% critical values for ADF \(\tau\)-stat.
Examples#
library tspdlib;
// Load date file
y = loadd(getGAUSSHome() $+ "pkgs/tspdlib/examples/ts_examples.csv", "Y");
// No deterministic component
model = 0;
// Call ADF test
{ ADFtau, ADFp, cvADF } = ADF(y, model);
Source#
adf.src
See also
Functions adf_1br()
, adf_2br()