coint_cissanso#
Purpose#
Computes a LM-type statistic to test the null hypothesis of cointegration allowing for the possibility of a structural break.
Format#
- { SCols, TBols, SCdols, TBdols, lambda, cv } = coint_cissanso(y, x, model[, bwl, varm, trimm, q])#
- Parameters:
y (Nx1 matrix) – Dependent variable.
x (NxK matrix) – Independent variable.
model (Scalar) –
Model to be implemented.
1
Model An: Level shift.
2
Model A: Level shift with trend.
3
Model D: Regime shift.
4
Model E: Regime and trend shift.
bwl (Scalar) – Optional, bandwidth length for long-run variance computation. Default = round(4 * (T/100)^(2/9)).
varm (Scalar) –
Optional, long-run consistent variance estimation method. Default = 1.
1
iid.
2
Bartlett.
3
Quadratic Spectral (QS).
4
SPC with Bartlett (Sul, Phillips & Choi, 2005)
5
SPC with QS
6
Kurozumi with Bartlett
7
Kurozumi with QS
trimm (Scalar) – Optional, trimming rate. Default = 0.10.
q (Scalar) – Optional, number of leads and lags for DOLS estimation. Default = int(4 * (t/100)^(2/9)).
- Returns:
SCols (Scalar) – SC test based on OLS estimation
TBols (Scalar) – Break location based on OLS estimation.
SDols (Scalar) – SC test based on DOLS estimation
TBDols (Scalar) – Break location based on DOLS estimation.
lamdba – Fraction of break (TB/T)
cv (Vector) – 1%, 5%, 10% critical values for the chosen model
Examples#
library tspdlib;
// Load dataset
data = loadd(getGAUSSHome() $+ "pkgs/tspdlib/examples/ts_coint.csv",
". + date($Date, '%b-%y')");
// Define y and x matrix
y = data[., 1];
x = data[., 2:cols(data)];
// Level shifts
model = 1;
// Call test
{ SCols, TBols, SCdols, TBdols, lambda, cv } = coint_cissanso(y, x, model);
Source#
coint_cissano.src
See also
Functions coint_egranger()
, coint_ghansen()
, coint_hatemij()
, coint_maki()