coint_cissanso¶
Purpose¶
Computes a LM-type statistic to test the null hypothesis of cointegration allowing for the possibility of a structural break.
Format¶
-
{ SCols, TBols, SCdols, TBdols, lambda, cv } =
coint_cissanso(y, x, model[, bwl, varm, trimm, q])¶ Parameters: - y (Nx1 matrix) – Dependent variable.
- x (NxK matrix) – Independent variable.
- model (Scalar) –
Model to be implemented.
1 Model An: Level shift. 2 Model A: Level shift with trend. 3 Model D: Regime shift. 4 Model E: Regime and trend shift. - bwl (Scalar) – Optional, bandwidth length for long-run variance computation. Default = round(4 * (T/100)^(2/9)).
- varm (Scalar) –
Optional, long-run consistent variance estimation method. Default = 1.
1 iid. 2 Bartlett. 3 Quadratic Spectral (QS). 4 SPC with Bartlett (Sul, Phillips & Choi, 2005) 5 SPC with QS 6 Kurozumi with Bartlett 7 Kurozumi with QS - trimm (Scalar) – Optional, trimming rate. Default = 0.10.
- q (Scalar) – Optional, number of leads and lags for DOLS estimation. Default = int(4 * (t/100)^(2/9)).
Returns: - SCols (Scalar) – SC test based on OLS estimation
- TBols (Scalar) – Break location based on OLS estimation.
- SDols (Scalar) – SC test based on DOLS estimation
- TBDols (Scalar) – Break location based on DOLS estimation.
- lamdba – Fraction of break (TB/T)
- cv (Vector) – 1%, 5%, 10% critical values for the chosen model
Examples¶
library tspdlib;
// Load dataset
data = loadd(getGAUSSHome() $+ "pkgs/tspdlib/examples/ts_coint.csv",
". + date($Date, '%b-%y')");
// Define y and x matrix
y = data[., 1];
x = data[., 2:cols(data)];
// Level shifts
model = 1;
// Call test
{ SCols, TBols, SCdols, TBdols, lambda, cv } = coint_cissanso(y, x, model);
Source¶
coint_cissano.src
See also
Functions coint_egranger(), coint_ghansen(), coint_hatemij(), coint_maki()