coint_egranger#
Purpose#
Computes the Engle-Granger test of the null hypothesis of no cointegration against the alternative of cointegration.
Format#
- { tau, cvADF } = coint_egranger(y, x, model[, pmax, ic])#
- Parameters:
y (Nx1 matrix) – Dependent variable.
x (NxK matrix) – Independent variable.
model (Scalar) –
Model to be implemented.
0
No deterministic components.
1
Constant only.
2
Constant and trend.
pmax – Optional, maximum number of lags for \(\Delta y\) in ADF test. Default = 8.
ic (Scalar) –
Optional, the information criterion used for choosing lags. Default = 2.
1
Akaike.
2
Schwarz.
- Returns:
tau (Scalar) – Engle & Granger (1987) ADF test.
cv (Vector) – 1%, 5%, 10% critical values for chosen model.
Examples#
library tspdlib;
// Load dataset
data = loadd(getGAUSSHome() $+ "pkgs/tspdlib/examples/ts_coint.csv",
". + date($Date, '%b-%y')");
// Define y and x matrix
y = data[., 1];
x = data[., 2:cols(data)];
// No constant or trend
model = 0;
// Call test
{ tau, cvADF } = coint_egranger(y, x, model);
Source#
coint_egranger.src
See also
Functions coint_cissanso()
, coint_ghansen()
, coint_hatemij()
, coint_maki()