kss#
Purpose#
Computes the KSS unit root test.
Format#
- { kss_t, p, cv } = kss(y, model[, pmax, ic])#
- Parameters:
y (Nx1 matrix) – Time series data to be tested.
model (Scalar) –
Model to be implemented.
0
Zero mean & no trend
1
Constant included.
2
Constant and trend.
pmax (Scalar) – Optional, the maximum number of lags for \(\Delta y\). Default = 8.
ic (Scalar) –
Optional, the information criterion used for choosing lags. Default = 3.
1
Akaike.
2
Schwarz.
3
t-stat significance.
- Returns:
kss_t (Scalar) – KSS tau-statistic
p (Scalar) – Chosen number of lags.
cv (Vector) – 1, 5, and 10 percent critical values for KSS tau-stat based on response surfaces.
Examples#
library tspdlib;
// Load date file
y = loadd(getGAUSSHome() $+ "pkgs/tspdlib/examples/TSe.dat");
// Run model with constant
model = 1;
// Run test
stat = kss(y, model);
Source#
kss.src
See also
Functions adf()
, kss()
qr_fourier_kss()