morpFit#
Purpose#
Estimates a multivariate ordered response probit (MORP) model using flexible correlation structures and efficient maximum likelihood estimation.
Format#
- result = morpFit(fname, dvordname, davordname, ivord[, ctl])#
- Parameters:
fname (string) – Name of the dataset file to load.
dvordname (Kx1 string vector) – Vector of dependent ordinal variable names.
davordname (Kx1 string vector) – Vector of alternative availability variable names.
ivord (KxM string matrix) – Matrix of independent variable names for the ordered response.
ctl (struct) –
Optional. Instance of a
morpControlstructure for advanced control of estimation options. If not provided, defaults are used.Member
Type
Default
Description
ctl.method
string
"OVUS"Analytic approximation method to use in estimation.
ctl.spher
scalar
0If 1, uses spherical parameterization; if 0, uses radial parameterization.
ctl.indep
scalar
0If 1, assumes independence across equations; if 0, allows correlation.
ctl.indepfirst
scalar
0If 1, estimates the independence model first before correlated estimation.
ctl.correst
matrix
{}Correlation restriction matrix for advanced restriction specifications.
- Returns:
result (scalar) – Returns 1 upon successful estimation.
Details#
Uses the
morpControlstructure to specify method, independence assumptions, spherical parameterizations, and correlation restrictions.Automatically initializes and structures threshold parameters, independent variable parameters, and correlation parameters for the ordered response model.
Utilizes
maxlikandmaxprtfor iterative maximum likelihood estimation with the appropriate likelihood gradient functions for initial estimation and final covariance computation.Handles estimation for both independent and correlated structures, including advanced correlation restriction handling and scaling.
Library#
bhatlib
Source#
morpfit.src