igarchFit¶
Purpose¶
Estimates integrated GARCH model, i.e., a model containing a unit root.
Format¶
-
gOut =
igarchFit(y, p[, q, gCtl])¶ -
gOut =
igarchFit(y, x, p[, q, gCtl]) -
gOut =
igarchFit(dataset, formula, p[, q, gCtl]) Parameters: - y (Matrix) – dependent variables.
- x (Matrix) – independent variables.
- dataset (string) – name of data set or null string.
- formula (string) – formula string of the model. E.g. “y ~ X1 + X2” ‘y’ is the name of dependent variable, ‘X1’ and ‘X2’ are names of independent variables; E.g. “y ~ .” , ‘.’ means including all variables except dependent variable ‘y’;
- p (scalar) – order of the GARCH parameters.
- q (scalar) – Optional input, order of the ARCH parameters.
- gctl –
Optional input,
garchControlstructure.gctl.density scalar, density of error term: 0 Normal distribution. (Default) 1 Student’s t-distribution. 3 Skew generalized t-distribution. gctl.asymmetry scalar, if nonzero assymetry terms are added. (Default = 0) gctl.inmean scalar, GARCH-in-mean, square root of conditional variance is included in the mean equation. gctl.stConstraintsType scalar, type of enforcement of stationarity requirements: 1 Roots of characteristic polynomial constrained outside unit circle. (Default) 2 ARCH, GARCH parameters constrained to sum to less than one and greater than zero. 3 None. gctl.cvConstraintsType scalar, type of enforcement of nonnegative conditional variances: 0 Direct constraints. (Default) 1 Nelson & Cao constraints. gctl.covType scalar, type of covariance matrix of parameters: 1 Maximum Likelihood. (Default) 2 Quasi-Maximum Likelihood. (Default) 3 None. gctl.sqpsolvemtControlProc function pointer, pointer to a function that updates optimization settings by setting the sqpsolvemtControlstructure members.gctl.cmlmtControlProc function pointer, pointer to a function that updates optimization settings by setting the cmlmtControlstructure members.gctl.start PV structure, estimation starting values.
Returns: gOut –
garchEstimationstructure.gout.aic scalar, Akiake criterion. gout.bic scalar, Bayesian information criterion. gout.lrs scalar, likelihood ratio statistic. gout.numObs scalar, number of observations. gout.df scalar, degrees of freedom. gout.par instance of PV structure containing parameter estimates. gout.retcode scalar, return code:
1 Normal convergence. 2 Forced exit. 3 Function calculation failed. 4 Gradient calculation failed. 5 Hessian calculation failed. 6 Line search failed. 7 Error with constraints. 8 Function complex. gout.moment KxK matrix, moment matrix of parameter estimates. gout.climits Kx2 matrix, confidence limits. gout.tsmtDesc An instance of the
tsmtModelDescstructure containing the following members:tsmtDesc.depvar Kx1 string array, names of endogenous variables. tsmtDesc.indvars Mx1 string array, names of exogenous variables. tsmtDesc.timespan 2x1 string array, range of the time series. Available if date vector is passed as part of a dataframe input. tsmtDesc.ncases Scalar, number of observations. tsmtDesc.df Scalar, degrees of freedom. tsmtDesc.model_name String, model name. gout.sumStats An instance of the
tsmtSummaryStatsstructure containing the following members:sumStats.sse Vector, sum of the squared errors of estimates for endogenous variables in the model. sumStats.mse Vector, mean squared errors of estimates for endogenous variables in the model. sumStats.rmse Vector, root mean squared errors of estimates for endogenous variables in the model. sumStats.see Vector, standard error of the estimates for endogenous variables in the model. sumStats.rsq Vector, r-squared of estimates for endogenous variables in the model. sumStats.AdjRsq Scalar, adjusted r-squared of estimates for endogenous variables in the model. sumStats.ssy Scalar, total sum of the squares for endogenous variables in the model. sumStats.DW Scalar, Durbin-Watson statistic for residuals from the estimates for endogenous variables in the model.
Example¶
new;
cls;
library tsmt;
y = loadd(getGAUSSHome("pkgs/tsmt/examples/igarch.dat"));
struct garchEstimation gOut;
gOUt = igarchFit(y, 1, 1);
This prints the following output:
================================================================================
Model: I-GARCH(1,1) Dependent variable: Y
Time Span: Unknown Valid cases: 300
================================================================================
Coefficient Upper CI Lower CI
beta0[1,1] 0.02710 -0.04224 0.09644
garch[1,1] 0.81404 0.71688 0.91120
arch[1,1] 0.18596 0.06604 0.30587
omega[1,1] 0.01468 -0.00739 0.03675
================================================================================
AIC: -635.63652
LRS: -643.63652
Library¶
tsmt
Source¶
tsgarch.src