arimaSS

Purpose

Estimates ARIMA models using a state space representation, the Kalman filter, and maximum likelihood.

Format

vOut = arimaSS(y, p[, d, q, trend, const])
Parameters:
  • y (Nx1 vector) – data.
  • p (Scalar) – the autoregressive order.
  • d (Scalar) – Optional, the order of differencing. Default = 0.
  • q (Scalar) – Optional, the moving average order. Default = 0.
  • trend (Scalar) – Optional, an indicator variable to include a trend in the model. Set to 1 to include trend, 0 otherwise. Default = 0.
  • const (Scalar) – Optional, an indicator variable to include a constant in the model. Set to 1 to include constant, 0 otherwise. Default = 1.
Returns:

vOut (struct) –

An instance of an arimamtOut structure containing the following members:

amo.aic Scalar, value of the Akaike information criterion.
amo.b Kx1 vector, estimated model coefficients.
amo.e Nx1 vector, residual from fitted model.
amo.ll Scalar, the value of the log likelihood function.
amo.sbc Scalar, value of the Schwartz Bayesian criterion.
amo.lrs Lx1 vector, the Likelihood Ratio Statistic.
amo.vcb KxK matrix, the covariance matrix of estimated model coefficients.
amo.mse Scalar, mean sum of squares for errors.
amo.sse Scalar, the sum of squares for errors.
amo.ssy Scalar, the sum of squares for Y data.
amo.rstl an instance of the kalmanResult structure.
amo.tsmtDesc

An instance of the tsmtModelDesc structure containing the following members:

tsmtDesc.depvar Kx1 string array, names of endogenous variables.
tsmtDesc.indvars Mx1 string array, names of exogenous variables.
tsmtDesc.timespan 2x1 string array, range of the time series. Available if date vector is passed as part of a dataframe input.
tsmtDesc.ncases Scalar, number of observations.
tsmtDesc.df Scalar, degrees of freedom.
tsmtDesc.model_name String, model name.
amo.sumStats

An instance of the tsmtSummaryStats structure containing the following members:

sumStats.sse Vector, sum of the squared errors of estimates for endogenous variables in the model.
sumStats.mse Vector, mean squared errors of estimates for endogenous variables in the model.
sumStats.rmse Vector, root mean squared errors of estimates for endogenous variables in the model.
sumStats.see Vector, standard error of the estimates for endogenous variables in the model.
sumStats.rsq Vector, r-squared of estimates for endogenous variables in the model.
sumStats.AdjRsq Scalar, adjusted r-squared of estimates for endogenous variables in the model.
sumStats.ssy Scalar, total sum of the squares for endogenous variables in the model.
sumStats.DW Scalar, Durbin-Watson statistic for residuals from the estimates for endogenous variables in the model.

Example

new;
library tsmt;

// Create file name with full path
fname = getGAUSSHome("pkgs/tsmt/examples/wpi1.dat");

// Load variable 'wpi' from 'wpi1.dat'
y = loadd(fname, "wpi");

// Model settings
p = 1;
d = 1;
q = 1;
trend = 0;
const = 1;

// Declare 'amo' to be an arimamtOut structure
// to hold the estimation results and then
// estimate the model
struct arimamtOut amo;
amo = arimaSS(y, p, d, q, trend, const);

The example above prints the following results

================================================================================
Model:                 ARIMA(1,1,1)          Dependent variable:             wpi
Time Span:                  Unknown          Valid cases:                    124
SSE:                         68.406          Degrees of freedom:             119
Log Likelihood:             135.464          RMSE:                         0.746
AIC:                        262.928          SEE:                         17.102
SBC:                        290.177          Durbin-Watson:                1.768
R-squared:                    0.416          Rbar-squared:                 0.854
================================================================================
Coefficient                Estimate      Std. Err.        T-Ratio     Prob |>| t
--------------------------------------------------------------------------------

Constant                    0.80003            ---            ---            ---
wpi L(1)                    0.86813        0.06389       13.58860        0.00017
MA  L(1)                   -0.40594        0.12318       -3.29550        0.03006
Sigma wpi                   0.52382        0.29577        1.77104        0.15126
================================================================================

Library

tsmt

Source

sarima_ss.src

See also

Functions arimaFit(), sarimaSS()