selectLags¶
Purpose¶
Select lags based on method of statistical inference.
Format¶
-
{ stat, p_mat } =
selectLags(y, x[, maxlag, method, print_out])¶ Parameters: - y (matrix) – Nx1 data to be tested.
- x (matrix) – NxK, exogenous regressor. Set equal to 0 if there are no exogenous variables.
- maxlag (scalar) – Optional, maximum lags. Default = 12.
- method (string) –
Optional, lag selection method:
AIC Akaike information criterion. (Default) BIC Bayesian information criterion. HQC Hannan-Quinn criterion. FPE Final prediction error. ALL All methods computed. - printOut (scalar) – Optional, indicator to print out. 1 = print out, 0 = no print out. Default = 1.
Returns: - stat (matrix) – lag selection criterion values.
- p_mat (matrix) – optimal VAR lags.
Example¶
new;
cls;
library tsmt;
// Use the simarmamt procedure to generate ar data
// This generates 1000 observations of and
// AR(4) series with a constant
// and standard deviation equal to 1.
b = { 0.1, .3, -.4, 0.2 };
q = 0;
p = 4;
const = 1;
tr = 0;
n = 1000;
k = 1;
std = 1;
seed = 19786;
y = simarmamt( b, p, q, const, tr, n, k, std, seed );
// Set parameters for the simarmamt procedure
// Exogenous variables -- Add intercept
x = ones( rows(y), 1 );
// Max number of lags to test for
p = 8;
// Method to test
method = "AIC";
printOut =1 ;
{ stat , p_mat } = selectLags( y, x, p, method, printOut );
// Method to test
method = "ALL";
{ stat_all , p_mat_all } = selectLags( y, x, p, method, printOut );
Library¶
tsmt
Source¶
selectlags.src