qr_adf¶
Purpose¶
Computes the quantile Augmented Dickey-Fuller unit root test.
Format¶
-
{ qr_tstat, lags, cv } =
qr_ADF(y, model, tau[, pmax, ic])¶ Parameters: - y (Nx1 matrix) – Time series data to be tested.
- model (Scalar) –
Model to be implemented.
1 Constant. 2 Constant and trend. - tau (Scalar) – The quantile (\(0 \lt \tau \lt 1\)).
- pmax (Scalar) – Optional, the maximum number of lags for \(\Delta y\). Default = 8.
- ic (Scalar) –
Optional, the information criterion used for choosing lags. Default = 3.
1 Akaike. 2 Schwarz. 3 t-stat significance.
Returns: - qr_tstat (Scalar) – Quantile, Dickey-Fuller test statistic.
- p (Scalar) – Chosen number of lags.
- cv (Vector) – 1%, 5%, 10% critical values given the estimated delta2
Examples¶
library tspdlib;
// Load date file
y = loadd(getGAUSSHome() $+ "pkgs/tspdlib/examples/TSe.dat");
// Run model with constant
model = 1;
// Test for 70% percentile
tau = 0.7;
// Run test
{ stat1, p1, cv1 } = qr_ADF(y, model, tau);
Source¶
qr_adf.src
See also
Functions adf(), adf_1break(), adf_2breaks(), qr_kss(), qr_fourier_adf()