Maximum Likelihood Estimation with Nonlinear Equality Constraints#

This GAUSS maximum likelihood example demonstrates the use of CMLMT to estimate parameters of a tobit model with nonlinear equality constraints.

Key example features#

  • Usages of data from the file cmlmttobit.dat (included with cmlmt).

  • User defined likelihood function, lpr with four inputs:
    • A PV structure storing parameters.

    • Additional X and y data matrices, which are passed to cmlmt`() as optional arguments.

    • The required ind input.

  • The inclusion of analytic gradient computations, as specified in the lpr function.

  • A user-defined function eqp in combination with the c0.eqProc member of the cmlmtControl structure to specify the equality constraints.

There are two equality constraints that are implemented in this example, one linear and one nonlinear:

\[p[1] - p[2] = 0\]
\[p[2] * p[3] - 1 = 0\]

where \(p[1], p[2], \ldots, p[5]\) are the model parameters to be estimated.

Code for estimation#

/*
**   Maximum likelihood tobit model
*/
new;
library cmlmt;

// Tobit likelihood function with 4 inputs
//    i.      p      - The PV parameter structur
//    ii-iii. x and y - Extra data needed by the objective procedure
//    ii.     ind     - The indicator vector
proc lpr(struct PV p, x, y, ind);
    local s2, b0, b, yh, u, res, g1, g2;

    // Declare 'mm' to be a modelResults
    // struct local to this procedure
    struct modelResults mm;

    // Unpack parameters from PV structure
    b0 = pvUnpack(p, "b0");
    b = pvUnpack(p, "b");
    s2 = pvUnpack(p, "variance");

    // Function computations
    yh = b0 + x * b;
    res = y - yh;
    u = y[., 1] ./= 0;

    // If first element of 'ind' is non-zero,
    // compute function evaluation
    if ind[1];
        mm.function = u.*lnpdfmvn(res, s2) + (1 - u).*(ln(cdfnc(yh/sqrt(s2))));
    endif;

    // If second element of 'ind' is non-zero,
    // compute function evaluation
    if ind[2];
      yh = yh/sqrt(s2);
      g1 = ((res~x.*res)/s2) ~ ((res.*res/s2) - 1)/(2*s2);
      g2 = ( -( ones(rows(x), 1) ~ x )/sqrt(s2) ) ~ (yh/(2*s2));
      g2 = (pdfn(yh)./cdfnc(yh)).*g2;
      mm.gradient = u.*g1 + (1 - u).*g2;
    endif;

    // Return modelResults struct
    retp(mm);

endp;

// Pack parameters into PV structure
// note that first call to pvPack
struct PV p0;
p0 = pvPack(pvCreate, 1, "b0");
p0 = pvPack(p0, 1|1|1, "b");
p0 = pvPack(p0, 1, "variance");

// Load data
z = loadd(getGAUSSHome("pkgs/cmlmt/examples/cmlmttobit.dat"));

// Separate X and y
y = z[., 1];
x = z[., 2:4];

// Declare 'c0' to be a cmlmtControl struct
// and fill with default settings
struct cmlmtControl c0;
c0 = cmlmtControlCreate();

// Procedure to compute equality constraints
// this must specify the constraint such that
// eqp(x) = 0
proc eqp(p, x, y);
   local c, b0, b;

   // Extract parameters
   b0 = pvUnpack(p, "b0");
   b = pvUnpack(p, "b");

   // This will be returned and
   // it should be a vector of zeros
   // with the same number of rows as constraints
   c = zeros(2, 1);

   // First constraint
   c[1] = b0 - b[1];

   // Second constraint
   c[2] = b[2] * b[3] - 1;

   retp(c);
endp;

// Assign pointer for equality procedure
c0.eqProc = &eqp;

// Declare 'out' to be a cmlmtResults
// struct to hold optimization results
struct cmlmtResults out;
out = cmlmtprt(cmlmt(&lpr, p0, x, y, c0));

Results#

The cmlmtprt() procedure prints three output tables:

  • Estimation results.

  • Correlation matrix of parameters.

  • Wald confidence limits.

Estimation results#

===============================================================================
 CMLMT Version 3.0.0
===============================================================================

return code =    0
normal convergence

Log-likelihood        -129.935
Number of cases     100

Covariance of the parameters computed by the following method:
ML covariance matrix
  Parameters    Estimates     Std. err.  Est./s.e.  Prob.    Gradient
---------------------------------------------------------------------
b0[1,1]          0.7560        0.0862       8.775   0.0000     27.6776
b[1,1]           0.7560        0.0862       8.775   0.0000    -27.6779
b[2,1]           1.1077        0.1279       8.658   0.0000    -34.1711
b[3,1]           0.9028        0.1043       8.658   0.0000    -41.9260
variance[1,1]    1.2446        0.1883       6.610   0.0000      0.0085

The estimation results reports:

  • That the model has converged normally with a return code of 0. Any return code other than 0, indicates an issue with convergence. The cmlmt() documentation provides details on how to interpret non-zero return codes.

  • The log-likelihood value and number of cases.

  • Parameter estimates, standard errors, t-statistics and associated p-values, and gradients.

  • The results are consistent with our constraints: - b0 and b[1, 1] are equal (\(b0 - b[1, 1] = 0\)). - b[2, 1]*b[3, 1] - 1 = \(1.1077 * 0.9028 - 1 = 3.15e-05\).

  • The gradients are not equal to zero, which is indicative that the contraints are binding.

Parameter correlations#

 Correlation matrix of the parameters
            1                1      -0.27931016       0.27931016    -0.0049885835
            1                1      -0.27931016       0.27931016    -0.0049885835
  -0.27931016      -0.27931016                1               -1       0.01958035
   0.27931016       0.27931016               -1                1      -0.01958035
-0.0049885909    -0.0049885909      0.019580346     -0.019580346                1

Confidence intervals#

Wald Confidence Limits

                            0.95 confidence limits
Parameters    Estimates     Lower Limit   Upper Limit    Gradient
----------------------------------------------------------------------
b0[1,1]          0.7560        0.5849        0.9270       27.6776
b[1,1]           0.7560        0.5849        0.9270      -27.6779
b[2,1]           1.1077        0.8537        1.3617      -34.1711
b[3,1]           0.9028        0.6958        1.1098      -41.9260
variance[1,1]    1.2446        0.8708        1.6184        0.0085

Number of iterations    10
Minutes to convergence     0.00012