tarTest#
Purpose#
Estimates the pth order threshold autoregression model.
Format#
- TARout = tarTest(yt, tar0)#
- Parameters:
yt (Nx1 vector) – data.
tar0 (struct) –
TARControl
structure containing the following elements:p
scalar, Autoregressive order of the STAR model.
omit
scalar, Nx1 vector number of lags (below p) to omit from the matrix.
lowerQuantile
scalar, the lower quantile.
upperQuantile
scalar, the upper quantile.
rep
scalar, the number of simulation replications.
printOutput
scalar, 0 or 1, 1 prints output to the screen.
graph
scalar, 0 or 1, 1 turns on plotting.
dstart
scalar, start date of the time series in DT scalar format as used by plotTS.
freq
scalar, Data frequency, 12 for monthly, 4 for quarterly or 1 for annual.
- Returns:
TAROut (struct) –
TAROut
structure containing the following return elements:tests
vector of test statistics (in order): SupLM, ExpLM, AveLM, SupLMs, ExpLMs, AveLMs.
pvalues
vector, estimated asymptotic p-values or test statistics.
coefficients
matrix, first column contains estimated coefficients and second column contains standard errors.
regimeErrorVariance
vector, 2x1, error variance for Regime 1 and Regime 2, respectively.
thresholdLag
scalar, threshold variable lag.
thresholdValue
scalar, threshold estimate.
errorVariance
scalar, threshold model error variance.
Example#
new;
cls;
library tsmt;
// Real GNP data
// Seasonally adjusted and transformed in annualized quarterly growth rates
// 1947-1990
gnp = loadd( getGAUSSHome() $+ "pkgs/tsmt/examples/gnp_4790.fmt");
yg = ln(gnp[., 1]);
y = (yg[2:rows(yg)]-yg[1:rows(yg)-1])*400;
// Declare the structure
struct TARControl tar0;
// Initialize the structure
tar0 = TARControlCreate();
// Maximum number of lags considered
tar0.p = 5;
// Lags to omit from the test
omit = { 3, 4 };
tar0.omit = omit;
// Number of replications for Monte Carlo
tar0.rep = 5000;
// Data start date and frequency
tar0.dstart = 1947;
tar0.freq = 4;
// Run function
struct TAROut tarfnl;
tarfnl = tarTest( y, tar0 );
References#
Hansen, B.E. (1996). Inference when a nuisance parameter is nost identified under the null hypothesis, Econometrica, 64(2), 413-430.
Franses, P.H. and Dijk, D. (2000) Non-linear Time Series Models in Empirical Finance. Cambridge University Press, New York.
Library#
tsmt
Source#
tartest.src