qr_adf#
Purpose#
Computes the quantile Augmented Dickey-Fuller unit root test.
Format#
- { qr_tstat, lags, cv } = qr_ADF(y, model, tau[, pmax, ic])#
- Parameters:
y (Nx1 matrix) – Time series data to be tested.
model (Scalar) –
Model to be implemented.
1
Constant.
2
Constant and trend.
tau (Scalar) – The quantile (\(0 \lt \tau \lt 1\)).
pmax (Scalar) – Optional, the maximum number of lags for \(\Delta y\). Default = 8.
ic (Scalar) –
Optional, the information criterion used for choosing lags. Default = 3.
1
Akaike.
2
Schwarz.
3
t-stat significance.
- Returns:
qr_tstat (Scalar) – Quantile, Dickey-Fuller test statistic.
p (Scalar) – Chosen number of lags.
cv (Vector) – 1%, 5%, 10% critical values given the estimated delta2
Examples#
library tspdlib;
// Load date file
y = loadd(getGAUSSHome() $+ "pkgs/tspdlib/examples/TSe.dat");
// Run model with constant
model = 1;
// Test for 70% percentile
tau = 0.7;
// Run test
{ stat1, p1, cv1 } = qr_ADF(y, model, tau);
Source#
qr_adf.src
See also
Functions adf()
, adf_1break()
, adf_2breaks()
, qr_kss()
, qr_fourier_adf()