meanSquaredError#

Purpose#

Returns the mean squared error between two input vectors, or sets of vectors.

Format#

mse = meanSquaredError(y_true, y_pred)#
Parameters:
  • y_true (Nx1 vector, or NxK matrix.) – The true values.

  • y_pred (Nx1 vector, or NxK matrix) – The predicted values.

Returns:

mse – The mean squared error between the column(s) in y_true and the column(s) in y_pred.

Examples#

Basic example#

y_true = { 7.3, 2.1, 5.9, 1.1, 3.3, 4.4 };

y_pred = { 6.9, 1.5, 5.7, 1.3, 3.2, 4.7 };

mse = meanSquaredError(y_true, y_pred);

After the above code:

mse = 0.11666667

MSE for multiple Lasso predictions#

new;
library gml;

// Get file name with full path
fname = getGAUSSHome("pkgs/gml/examples/pcancer.csv");

// Load variables
X = loadd(fname, ". -lpsa");
lpsa = loadd(fname, "lpsa");

// Split into 80% test and train sets
{ lpsa_train, lpsa_test, X_train, X_test } = trainTestSplit(lpsa, X, 0.8);

/*
** Train 3 models with 3 different lambda values
*/

struct lassoControl ctl;
ctl.lambdas  = { 0.9, 0.6, 0.3 };

// Declare model structure to store results
struct lassoModel mdl;
mdl = lassoFit(lpsa_train, X_train, ctl);

// Make predictions on test set
lpsa_pred = lmPredict(mdl, X_test);

// Compute MSE for test predictions
test_mse = meanSquaredError(lpsa_test, lpsa_pred);

print "lambda values: "; mdl.lambda;
print "test_mse: "; test_mse;
lambda values:

  0.90000000
  0.60000000
  0.30000000

test_mse:

   1.2019214
  0.89992338
  0.70390474

See also

Functions classificationMetrics()