decForestPredict#
Purpose#
Predicts responses using the output from decForestCFit()
or decForestRFit()
and matrix of independent variables.
Format#
- predictions = decForestPredict(dfm, x_test)#
- Parameters:
dfm (struct) –
An instance of the
dfModel
structure filled bydecForestRFit()
ordecForestCFit()
and containing the following relevant members:dfm.variableImportance
Matrix, 1 x p, variable importance measure if computation of variable importance is specified, zero otherwise.
dfm.oobError
Scalar, out-of-bag error if OOB error computation is specified, zero otherwise.
dfm.numClasses
Scalar, number of classes if classification model, zero otherwise.
dfm.opaqueModel
Matrix, contains model details for internal use only.
x_test (NxP matrix) – The test model features, or independent variables.
- Returns:
predictions (Nx1 numeric or string vector) – The predictions.
Examples#
new;
library gml;
rndseed 23423;
// Create file name with full path
fname = getGAUSSHome("pkgs/gml/examples/breastcancer.csv");
// Load all variables from dataset, except for 'ID'
data = loadd(fname, ". -ID");
// Separate dependent and independent variables
y = data[., "class"];
X = delcols(data, "class");
// Split data into 70% training and 30% test set
{ y_train, y_test, x_train, x_test } = trainTestSplit(y, x, 0.7);
// Declare 'df_mdl' to be an 'dfModel' structure
// to hold the trained model
struct dfModel df_mdl;
// Train the decision forest classifier with default settings
df_mdl = decForestCFit(y_train, X_train);
// Make predictions on the test set, from our trained model
y_hat = decForestPredict(df_mdl, X_test);
// Print diagnostic report
call classificationMetrics(y_test, y_hat);
The code above will print the following output:
======================================================================
Model: Decision Forest Target variable: class
Number Observations: 489 Number features: 9
Number of trees: 100 Obs. per Tree: 100%
Min. Obs. Per Node: 1 Impurity Threshhold: 0
======================================================================
======================================================================
Prediction Model: DF Classification Target variable: class
Number Predictions: 210 Number features: 9
======================================================================
===================================================
Classification metrics
===================================================
Class Precision Recall F1-score Support
0 0.99 0.99 0.99 154
1 0.98 0.96 0.97 56
Macro avg 0.98 0.98 0.98 210
Weighted avg 0.99 0.99 0.99 210
Accuracy 0.99 210
See also