pd_kpss#
Purpose#
Computes the panel data KPSS test.
Format#
- { testd_hom, testd_het, m_lee_est, brks } = pd_kpss(y, model[, nbreak, bwl, varm, pmax, bCtl])#
- Parameters:
y (TxN matrix) – Wide format panel data.
model (Scalar) –
Model to be implemented.
1
Constant (Hadri test).
2
Constant and trend (Hadri test).
3
Shift in the mean.
4
Shift in mean and trend.
nbreak (Scalar) – Optional, number of breaks to consider (up to 5). Default = 5.
bwl (Scalar) – Optional, bandwidth for the spectral window. Default = round(4 * (T/100)^(2/9)).
varm (Scalar) –
Optional, long-run consistent variance estimation method. Default = 1.
1
iid.
2
Bartlett.
3
Quadratic Spectral (QS).
4
SPC with Bartlett (Sul, Phillips & Choi, 2005)
5
SPC with QS
6
Kurozumi with Bartlett
7
Kurozumi with QS
- Returns:
test_hom (Scalar) – Panel test statistic assuming homogenous variance.
test_het (Scalar) – Panel test statistic assuming heterogenous variance.
m_lee_est (Matrix) – Contains results for each individual group. First column contains KPSS test statistic, second column contains the optimal number of lags selected using the mlwz criteria.
brks (Scalar) – Estimated breaks. Breaks for each individual group are contained in separate rows.
Examples#
new;
cls;
library tspdlib;
// Load data
data = loadd(__FILE_DIR $+ "pd_gdef.gdat");
data = setColDateFormats(data, "%Y", "Year");
// Set model to hve break in constant and trend
model = 4;
// Compute panel data test
{ test_hom, test_het, kpsstest, m_br} = pd_kpss(data, model);
// Plot results
plotPDKPSS(data, m_br, kpsstest);
Source#
pd_kpss.src
See also
Functions kpss_1break()
, kpss_2breaks()
, lmkpss()