bng_panic#
Purpose#
Computes the Pe test on ADF p-values found in Bai & Ng (2004) using panel analysis of idiosyncratic and common components (PANIC) test of nonstationarity.
Format#
- { ADFe, pval, lags, Pe, n_factors } = bng_panic(y, model[, pmax, ic_lags, kmax, ic_factors])#
- Parameters:
y (TxN matrix) – Panel data to be tested.
model (Scalar) –
Model to be implemented.
1
Constant.
2
Constant and trend.
pmax (Scalar) – Optional, the maximum number of lags for \(\Delta y\). Default = 8.
ic_lags (Scalar) –
Optional, the information criterion used for choosing lags. Default = 3.
1
Akaike.
2
Schwarz.
3
t-stat significance.
kmax (Scalar) – Maximum number of factors. Default = 5.
ic_factors (Scalar) –
Information Criterion for optimal number of factors. Default = 1.
1
PCp criterion.
2
ICp criterion.
- Returns:
ADFe (Scalar) – ADF statistic for idiosyncratic components for each cross-section.
pval (Scalar) – p-value of ADFe.
lags (Scalar) – Number of lags selected by chosen information criterion.
Pe (Scalar) – Pe statistic based on principal components with N(0,1).
n_factors (Scalar) – Number of factors by chosen information criterion
Examples#
library tspdlib;
// Load date file
y = loadd(__FILE_DIR $+ "PDe.dat");
/*
** Using the defaults
** for maximum number of lags,
** information criterions,
** and maximum number of factors.
*/
/*
** Model with constant
*/
model = 1;
{ ADFe, pval, lags, Pe, nf } = bng_panic(y, model);
Source#
pd_panic.src
See also
Functions bng_panicnew()
, jwl_panicadj()
, jwr_panicca()
, pd_stationary()