maxlikmtProfileLimits¶
Purpose¶
Computes confidence limits by inversion of the likelihood ratio statistic.
Format¶
-
out1 =
maxlikmtProfileLimits(&logl, out0[, ...., c1])¶ Parameters: - &logl (pointer) – Pointer to log-likelihood function used to generate results of an estimation by a call to
maxlikmt(). - out0 (struct) – Instance of
maxlikmtResultsstructure containing results of an estimation generated by a call tomaxlikmt(). - .. (Various) – Optional input arguments. They can be any set of structures, matrices, arrays, strings, required to compute the log-likelihood function.
- c1 – The set of optional input arguments must contain the instance of the
maxlikmtResultsstructure used in the call to
maxlikmt()that produced the results in out0.c1.bayesAlpha Exponent of the Dirichlet random variates used in the weighted bootstrap. Default = 1.4. c1.priorProc Pointer to a procedure for computing the prior. Assumes a uniform prior if not provided. c1.numSamples Number of re-samples in the weighted likelihood bootstrap. c1.BayesFname Filename for the simulated posterior parameters dataset. Defaults to a unique “BAYESxxxx” pattern. c1.maxBootTime Maximum time allowed for resampling. c1.Bounds Bounds on parameters, either 1x2 for all parameters or Kx2 for individual parameter bounds. Default = {-1e256, 1e256}. c1.algorithm Descent algorithm for optimization, includes BFGS, DFP, Newton, and BHHH. c1.switch Controls algorithm switching based on various performance metrics. c1.lineSearch Method for line search in optimization, includes augmented trust region method and others. Default varies based on constraints. c1.active Kx1 vector to control which parameters are active or fixed at start value. c1.numObs Number of observations, required if the log-likelihood function returns a scalar. c1.maxIters Maximum number of iterations for the optimization process. Default = 10000. c1.tol Convergence tolerance, optimization stops when all elements of the direction vector are below this value. Default = 1e-5. c1.weights Vector of weights for the objective function returning a vector. Default = 1. c1.covParType Determines the type of covariance matrix computed, QML or ML. Default = 1. c1.alpha Probability level for statistical tests. Default = .05. c1.feasibleTest If nonzero, parameters are tested for feasibility before computing the function in line search. Default = 1. c1.maxTries Maximum number of attempts in random search. Default = 100. c1.randRadius Radius of the random search, if attempted. Default = .001. c1.gradMethod Method for computing numerical gradient, includes central, forward, and backward difference. c1.hessMethod Method for computing numerical Hessian, similar options as gradient computation. c1.gradStep Increment size for computing numerical gradient, can be scalar or Kx1 vector. c1.hessStep Increment size for computing numerical Hessian, options similar to gradStep. c1.gradCheck If nonzero and analytical gradients/Hessian provided, numerical versions are computed for comparison. c1.state Seed for random number generator, ensuring reproducibility. c1.title Title of the run, for identification in output. c1.printIters If nonzero, iteration information is printed. Default = 0. c1.disableKey If nonzero, keyboard input is disabled during execution. Returns: out1 (struct) – Instance of maxlikmtResultsstructure that is a duplicate of out0 except that the member, out1.profileLimits, has been set to the confidence limits by inversion of the likelihood ratio statistic.- &logl (pointer) – Pointer to log-likelihood function used to generate results of an estimation by a call to
Example¶
library maxlikmt;
// Define the log-likelihood function
proc lpr(struct PV p, y, x, ind);
local s2, b0, b, yh, u, res, g1, g2;
struct modelResults mm;
b0 = pvUnpack(p,"b0");
b = pvUnpack(p,"b");
s2 = pvUnpack(p,"variance");
yh = b0 + x * b;
res = y - yh;
u = y[.,1] ./= 0;
if ind[1];
mm.function = u.*lnpdfmvn(res,s2) + (1-u).*(ln(cdfnc(yh/sqrt(s2))));
endif;
if ind[2];
yh = yh/sqrt(s2);
g1 = ((res~x.*res)/s2)~((res.*res/s2)-1)/(2*s2);
g2 = (-(ones(rows(x),1)~x)/sqrt(s2))~(yh/(2*s2));
g2 = (pdfn(yh)./cdfnc(yh)).*g2;
mm.gradient = u.*g1 + (1-u).*g2;
endif;
retp(mm);
endp;
struct PV p0;
p0 = pvPack(pvCreate, 1, "b0");
p0 = pvPack(p0, 1|1|1, "b");
p0 = pvPack(p0, 1, "variance");
struct maxlikmtControl c0;
c0 = maxlikmtcontrolcreate;
c0.title = "Tobit Example";
c0.Bounds = {-10 10, -10 10, -10 10, -10 10, .1 10};
z = loadd(getGAUSSHome("pkgs/maxlikmt/examples/maxlikmttobit.dat"));
y = z[., 1];
x = z[., 2:4];
struct maxlikmtResults out1;
out1 = maxlikmt(&lpr, p0, y, x, c0);
// Compute limits by inversion of likelihood ratio statistic
out1 = maxlikmtProfileLimits(&lpr, out1, y, x, c0);
// Print the results
call maxlikmtPrt(out1);