erspt#
Purpose#
Computes the ERS point optimal unit root test.
Format#
- { Pt, lrv, cvPT } = ERSpt(y, model[, bwl, varm])#
- Parameters:
y (Nx1 matrix) – Time series data to be tested.
model (Scalar) –
Model to be implemented.
1
Constant.
2
Constant and trend.
bwl (Scalar) – Optional, bandwidth for the spectral window. Default = round(4 * (T/100)^(2/9)).
varm (Scalar) –
Optional, long-run consistent variance estimation method. Default = 1.
1
iid.
2
Bartlett.
3
Quadratic Spectral (QS).
4
SPC with Bartlett (Sul, Phillips & Choi, 2005)
5
SPC with QS
6
Kurozumi with Bartlett
7
Kurozumi with QS
- Returns:
Pt (Scalar) – Point statistic
lrv (Scalar) – Long-run variance estimate.
cvPt (Vector) – 1%, 5%, and 10% critical values for Pt.
Examples#
library tspdlib;
// Load date file
y = loadd(getGAUSSHome() $+ "pkgs/tspdlib/examples/ts_examples.csv", "Y");
// With constant
model = 1;
// Call test
{ Pt, lrv, cvPt } = ERSpt(y, model);
Source#
gls.src