covmmtmt#
Purpose#
Prints covariance matrix of parameters with labels.
Format#
- a = covmmt(vout);
- Parameters:
vout (structure) – a post-estimation instance of the
varmamtOut
.- Returns:
cov (scalar)
Example#
new;
cls;
library tsmt;
// Create file name with full path
fname = getGAUSSHome("pkgs/tsmt/examples/mink.csv");
// Load two variables from the dataset into matrix 'y'
y = loadd(fname, "LogMink + LogMusk");
// Difference the data
y = vmdiffmt(y, 1);
// Declare 'vout' to be a varmamtOut structure
struct varmamtOut vout;
// Estimate the parameters of the VAR(1) model
vout = varmaFit(y, 1);
// Print covariance matrix
print covmmt(vout);
The printed covariance matrix is:
Covariance Matrix:
phi[1,1,1] phi[1,1,2] phi[1,2,1] phi[1,2,2] vc[1,1] vc[2,1] vc[2,2]
phi[1,1,1] 0.01557 -0.00504 0.00530 -0.00155 0.00001 0.00000 -0.00001
phi[1,1,2] -0.00504 0.01124 -0.00193 0.00384 0.00000 0.00001 0.00000
phi[1,2,1] 0.00530 -0.00193 0.01571 -0.00511 0.00001 0.00000 -0.00001
phi[1,2,2] -0.00155 0.00384 -0.00511 0.01129 0.00000 0.00001 0.00001
vc[1,1] 0.00001 0.00000 0.00001 0.00000 0.00016 0.00005 0.00002
vc[2,1] 0.00000 0.00001 0.00000 0.00001 0.00005 0.00009 0.00006
vc[2,2] -0.00001 0.00000 -0.00001 0.00001 0.00002 0.00006 0.00016
Library#
tsmt
Source#
autoregmt.src
See also
Functions varmaFit()