arimaSS#
Purpose#
Estimates ARIMA models using a state space representation, the Kalman filter, and maximum likelihood.
Format#
- vOut = arimaSS(y, p, d, q, trend, const)#
- Parameters:
y (Nx1 vector) – data.
p (Scalar) – the autoregressive order.
d (Scalar) – the order of differencing.
q (Scalar) – the moving average order.
trend (Scalar) – an indicator variable to include a trend in the model. Set to 1 to include trend, 0 otherwise.
const (Scalar) – an indicator variable to include a constant in the model. Set to 1 to include trend, 0 otherwise.
- Returns:
vOut (struct) –
An instance of an
arimamtOut
structure containing the following members:amo.aic
Scalar, value of the Akaike information criterion.
amo.b
Kx1 vector, estimated model coefficients.
amo.e
Nx1 vector, residual from fitted model.
amo.ll
Scalar, the value of the log likelihood function.
amo.sbc
Scalar, value of the Schwartz Bayesian criterion.
amo.lrs
Lx1 vector, the Likelihood Ratio Statistic.
amo.vcb
KxK matrix, the covariance matrix of estimated model coefficients.
amo.mse
Scalar, mean sum of squares for errors.
amo.sse
Scalar, the sum of squares for errors.
amo.ssy
Scalar, the sum of squares for Y data.
amo.rstl
an instance of the kalmanResult structure.
amo.tsmtDesc
An instance of the
tsmtModelDesc
structure containing the following members:tsmtDesc.depvar
Kx1 string array, names of endogenous variables.
tsmtDesc.indvars
Mx1 string array, names of exogenous variables.
tsmtDesc.timepsan
2x1 string array, range of the time series. Available if date vector is passed as part of a dataframe input.
tsmtDesc.ncases
Scalar, number of observations.
tsmtDesc.df
Scalar, degrees of freedom.
tsmtDesc.model_name
String, model name.
amo.sumStats
An instance of the
tsmtSummaryStats
structure containing the following members:sumStats.sse
Kx1 vector, sum of the squared errors of estimates for endogenous variables in the model.
sumStats.mse
Mx1 vector, mean squared errors of estimates for endogenous variables in the model.
sumStats.rmse
Mx1 vector, root mean squared errors of estimates for endogenous variables in the model.
sumStats.see
Mx1 vector, standard error of the estimates for endogenous variables in the model.
sumStats.rsq
Mx1 vector, r-squared of estimates for endogenous variables in the model.
sumStats.AdjRsq
String, adjusted r-squared of estimates for endogenous variables in the model.
sumStats.ssy
String, total sum of the squares for endogenous variables in the model.
sumStats.DW
String, Durbin-Watson statistic for residauls from the estimates for endogenous variables in the model.
Example#
new;
library tsmt;
// Create file name with full path
fname = getGAUSSHome("pkgs/tsmt/examples/wpi1.dat");
// Load variable 'wpi' from 'wpi1.dat'
y = loadd(fname, "wpi");
// Model settings
p = 1;
d = 1;
q = 1;
trend = 0;
const = 1;
// Declare 'amo' to be an arimamtOut structure
// to hold the estimation results and then
// estimate the model
struct arimamtOut amo;
amo = arimaSS(y, p, d, q, trend, const);
The example above prints the following results
================================================================================
Model: ARIMA(1,1,1) Dependent variable: wpi
Time Span: Unknown Valid cases: 124
SSE: 68.406 Degrees of freedom: 119
Log Likelihood: 135.464 RMSE: 0.746
AIC: 262.928 SEE: 17.102
SBC: 290.177 Durbin-Watson: 1.768
R-squared: 0.416 Rbar-squared: 0.854
================================================================================
Coefficient Estimate Std. Err. T-Ratio Prob |>| t
--------------------------------------------------------------------------------
Constant 0.80003 --- --- ---
wpi L(1) 0.86813 0.06389 13.58860 0.00017
MA L(1) -0.40594 0.12318 -3.29550 0.03006
Sigma wpi 0.52382 0.29577 1.77104 0.15126
================================================================================
Library#
tsmt
Source#
sarima_ss.src
See also
Functions arimaFit()
, sarimaSS()