lmkpss#
Purpose#
Computes the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) stationarity test.
Format#
- { kpss, cv } = LMkpss(y, model[, bwl, varm])#
- Parameters:
y (Nx1 matrix) – Time series data to be tested.
model (Scalar) –
Model to be implemented.
1
Constant.
2
Constant and trend.
bwl (Scalar) – Optional, bandwidth for the spectral window. Default = round(4 * (T/100)^(2/9)).
varm (Scalar) –
Optional, long-run consistent variance estimation method. Default = 1.
1
iid.
2
Bartlett.
3
Quadratic Spectral (QS).
4
SPC with Bartlett (Sul, Phillips & Choi, 2005)
5
SPC with QS
6
Kurozumi with Bartlett
7
Kurozumi with QS
- Returns:
kpss (Scalar) – The KPSS test statistic.
cvKPSS (Scalar) – 1%, 5%, and 10% critical values for the KPSS test statistic.
Examples#
library tspdlib;
// Load date file
y = loadd(getGAUSSHome() $+ "pkgs/tspdlib/examples/ts_examples.csv", "Y");
// Constant
model = 1;
{ kpss, cvKPSS } = lmkpss(y, model);
// Constant and trend
model = 2;
{ kpss, cvKPSS } = lmkpss(y, model);
Source#
kpss.src
See also
Functions adf()
, KPSS_1break()
, KPSS_2breaks()
, dfgls()
, erspt()