AmericanBinomPut_Greeks#
Purpose#
Computes Delta, Gamma, Theta, Vega, and Rho for American put options using the binomial method.
Format#
- { d, g, t, v, rh } = AmericanBinomPut_Greeks(S0, K, r, div, tau, sigma, N)#
- Parameters:
S0 (scalar) – current price.
K (Mx1 vector) – strike prices.
r (scalar) – risk free rate.
div (scalar) – continuous dividend yield.
tau (scalar) – elapsed time to exercise in annualized days of trading.
sigma (scalar) – volatility.
N (scalar) – number of time segments. A higher number of time segments will increase accuracy at the expense of increased computation time.
- Returns:
d (Mx1 vector) – delta.
g (Mx1 vector) – gamma.
t (Mx1 vector) – theta.
v (Mx1 vector) – vega.
rh (Mx1 vector) – rho.
Global Input#
_fin_thetaType |
scalar, if 1, one day look ahead, else, infinitesmal. Default = 0. |
_fin_epsilon |
scalar, finite difference stepsize. Default = 1e-8. |
Examples#
S0 = 305;
K = 300;
r = .08;
div = 0;
sigma = .25;
tau = .33;
print AmericanBinomPut_Greeks(S0, K, r, 0, tau, sigma, 60);
produces
-0.37483952
0.0031359210
0.99863719
65.800721
-31.075062
Remarks#
The binomial method of Cox, Ross, and Rubinstein (“Option pricing: a simplified approach,” Journal of Financial Economics, 7:229:264) as described in Options, Futures, and other Derivatives by John C. Hull is the basis of this procedure.
Source#
finprocs.src
See also
Functions AmericanBinomPut_ImpVol()
, AmericanBinomPut()
, AmericanBinomCall_Greeks()
, AmericanBSPut_Greeks()