spConjGradSol#
Purpose#
Attempts to solve the system of linear equations \(Ax = b\) using the conjugate gradient method where A is a symmetric sparse matrix.
Format#
- x = spConjGradSol(a, b, epsilon, maxit)#
- Parameters:
a (sparse matrix) – NxN symmetric sparse matrix.
b (vector) – Nx1 dense vector.
epsilon (scalar) – Method tolerance: If epsilon is set to 0, the default tolerance is set to 1e-6.
maxit (scalar) – Maximum number of iterations. If maxit is set to 0, the default setting is 300 iterations.
- Returns:
x (Nx1 dense vector) – dense vector, the solution to the system of linear equations \(Ax = b\).
Examples#
nz = { 0.000 2845.607 0.000 0.000 0.000,
2845.607 10911.430 0.000 0.000 0.000,
0.000 0.000 3646.798 2736.338 -2674.440,
0.000 0.000 2736.338 7041.526 -3758.528,
0.000 0.000 -2674.440 -3758.528 7457.899 };
sparse matrix a;
// Set 'a' to be a sparse matrix with the same contents as
// the dense matrix 'nz'
a = densetosp(nz, 0);
// Create our right-hand-side
b = { 10.349,
-3.117,
4.240,
0.013,
2.115 };
// Setting the third and fourth arguments to 0 employs the
// default tolerance maxit settings
x = spConjGradSol(a, b, 0, 0);
newb = a*x;
The results from the above code are:
-0.01504075
0.00363683
x = 0.00203504
-0.00033936
0.00084234
10.34900000
-3.11700000
newb = 4.24000000
0.01300000
2.11500000
Remarks#
If convergence is not reached within the maximum number of iterations
allowed, the function will either terminate the program with an error
message or return an error code which can be tested for with the scalerr()
function. This depends on the trap state as follows:
|
return error code: 60 |
|
terminate with error message: Unable to converge in allowed number of iterations. |
If matrix A is not symmetric or well conditioned use the /
operator to
perform the solve. For a nonsymmetric, but well conditioned matrix A,
use spBiconjGradSol()
.
See also
Functions spBiconjGradSol()