quantileFitLoc#
Purpose#
Perform local linear or quadratic quantile regression.
Format#
- q = quantileFitLoc(y, x[, tau[, xstar]][, qCtl])#
- q = quantileFitLoc(dataset, formula[, tau[, xstar]][, qCtl])
- Parameters:
y (Nx1 vector) – dependent variable.
x (NxK matrix or sparse matrix or N-dimensional array) – independent variables
dataset (string) – name of dataset.
formula (string) –
formula string of the model.
E.g
"y ~ X1 + X2"
, ‘y’ is the name of dependent variable, ‘X1’ and ‘X2’ are names of independent variables;E.g
"y ~ ."
, ‘.’ means including all variables except dependent variable ‘y’;E.g
"y ~ -1 + X1 + X2"
, ‘-1’ means no intercept model.tau (Mx1 vector) – Optional argument, quantile levels. Default = { 0.05, 0.5, 0.95 };
xstar (P*1 vector) – Optional argument, quantile points. Default =
seqa(0, 1/(50-1), 50)
.qCtl (struct) –
Optional argument. instance of the
qfitControl
structure containing the following members:qCtl.bandwidth
scalar, the multiplicative factor of the bandwidth. Default = 1.
qCtl.reg_type
scalar, the regression type. Default = 1.
- 1:
Linear regression.
- 2:
Quadratic regression.
qCtl.varnames
string array, variable names. Default =
{"X1", "X2", ..., "XK"}
.qCtl.verbose
scalar, print results Default = 1.
- 1:
Printing on.
- 0:
No printing.
qCtl.const
scalar, include constant in regression. Default = 1.
- 1:
a constant term will be added.
- 0:
no constant term will be added.
- Returns:
q (PxM matrix) – estimated quantile \(Y|X=xstar\)
Examples#
new;
cls;
// Set random number generator seed for
// repeatable random numbers
rndseed 4893;
N = 1000;
X = rndu(N, 1);
Y = sin(9*X) + (rndu(N, 1) - 0.5);
// Call quantileFitLoc
q = quantileFitLoc(Y, X);
Source#
quantilefit.src
See also
Functions glm()
, olsmt()
, quantileFit()