eig#
Purpose#
Computes the eigenvalues of a general matrix.
Format#
- va = eig(x)#
- Parameters:
x (NxN matrix or KxNxN array) – data used to compute the eigenvalues.
- Returns:
va (Nx1 vector or KxNx1 array) – the eigenvalues of x.
Examples#
x = { 0.5 1.2 0.3,
0.6 0.9 0.2,
0.8 1.5 0.0 };
va = eig(x);
After the above code, va will equal:
1.8626
-0.1871
-0.2754
To calculate eigenvalues and eigenvectors see eigv()
. To calculate generalized eigenvalues and eigenvectors, see lapgeig()
, or lapgeigv()
.
Remarks#
If x is an array, va will be an array containing the eigenvalues of each 2-dimensional array described by the two trailing dimensions of x. For example, if x is a 10x4x4 array, va will be a 10x4x1 array containing the eigenvalues of each of the 10 4x4 arrays contained in x.
Errors
If the eigenvalues cannot all be determined, va[1] is set to an
error code. Passing va[1] to the scalerr()
function will return the
index of the eigenvalue that failed. The eigenvalues for indices
\(scalerr(va[1])+1 \to N\) should be correct.
Error handling is controlled with the low bit of the trap flag.
|
set va[1] and terminate with message |
|
set va[1] and continue execution |
Invalid inputs, such as an \(\infty\), missing value or NaN will cause an
error. If the trap is set to 1, va will be set to a scalar error
code and program execution will continue. Passing this scalar error code
to the scalerr()
function will return -1.
Eigenvalue ordering
The eigenvalues are unordered except that complex conjugate pairs of eigenvalues will appear consecutively with the eigenvalue having the positive imaginary part first.