EuropeanBinomPut#
Purpose#
Prices European put options using binomial method.
Format#
- p = EuropeanBinomPut(S0, K, r, div, tau, sigma, N)#
- Parameters:
S0 (scalar) – current price.
K (Mx1 vector) – strike prices.
r (scalar) – risk free rate.
div (scalar) – continuous dividend yield.
tau (scalar) – elapsed time to exercise in annualized days of trading.
sigma (scalar) – volatility.
N (scalar) – number of time segments. A higher number of time segments will increase accuracy at the expense of increased computation time.
- Returns:
p (Mx1 vector) – put premiums.
Examples#
// Specify current price
S0 = 718.46;
// Specify strike prices
K = { 720, 725, 730 };
// Specify risk free rate
r = .0398;
// Specify volatility
sigma = .2493;
/*
** Compute elapsed time using
** `dtday` and `elapsedTradingDays`
*/
t_start = dtday(2012, 1, 30);
t_end = dtday(2012, 2, 16);
tau = elapsedTradingDays(t_start, t_end) /
annualTradingDays(2012);
// Compute premiums
c = EuropeanBinomPut(S0, K, r, 0, tau, sigma, 60);
print c;
produces:
16.872213
19.606098
22.390831
Remarks#
The binomial method of Cox, Ross, and Rubinstein (“Option pricing: a simplified approach”, Journal of Financial Economics, 7:229:264) as described in Options, Futures, and other Derivatives by John C. Hull is the basis of this procedure.
Source#
finprocs.src