sylvester#
Purpose#
Computes the solution to the Sylvester matrix equation, \(AX + XB = C\).
Format#
- X = sylvester(A, B, C)#
- Parameters:
A (MxM real or complex matrix) – data
B (NxN real or complex matrix) – data
C (MxN real or complex matrix) – data
- Returns:
X (MxN matrix) – solution to the equation \(AX + XB = C\).
Examples#
Real input#
// Create a 3 x 3 real matrix
A = { 0.9069 -0.3150 -0.9732,
0.6023 0.6848 0.4925,
-0.8555 -0.7430 0.6521 };
// Create a 2 x 2 real matrix
B = { -0.9876 0.4503,
-0.3043 0.9807 };
// Create a 3 x 2 real matrix
C = { -0.8625 0.5247,
0.6331 -0.3334,
0.7912 0.0711 };
// Solve the Sylvester matrix equation
X = sylvester(A, B, C);
After the code above, X will equal the 3x2 matrix:
X = -0.4279 0.3246
-1.0525 -0.0013
1.1609 -0.1071
Complex input#
// Create a 3 x 3 complex matrix
A = { 7 + 7i 4 + 10i 2 + 8i,
10 - 3i -7 - 5i -10 - 7i,
3 + 5i -10 - 2i 2 - 4i };
// Create a 2 x 2 complex matrix
B = { 5 + 1i -5 - 8i,
8 - 10i 8 - 1i };
// Create a 3 x 2 complex matrix
C = { -9 - 3i -1 - 1i,
9 - 8i -5 + 8i,
-1 - 2i -5 + 5i };
// Solve the Sylvester matrix equation
X = sylvester(A, B, C);
After the code above, X will equal the 3x2 complex matrix:
X = 0.1697 - 0.2242i -0.5923 + 0.2221i
-0.5684 + 0.4562i 0.3670 - 0.7153i
-0.7502 + 0.2470i -0.0636 - 0.4208i
Remarks#
The equation \(AX + XB = C\) will not have a unique solution if the eigenvalues of the matrices A and -B are equal. In this case an error will be returned.