sylvester#

Purpose#

Computes the solution to the Sylvester matrix equation, \(AX + XB = C\).

Format#

X = sylvester(A, B, C)#
Parameters:
  • A (MxM real or complex matrix) – data

  • B (NxN real or complex matrix) – data

  • C (MxN real or complex matrix) – data

Returns:

X (MxN matrix) – solution to the equation \(AX + XB = C\).

Examples#

Real input#

// Create a 3 x 3 real matrix
A = {  0.9069  -0.3150  -0.9732,
       0.6023   0.6848   0.4925,
      -0.8555  -0.7430   0.6521 };

// Create a 2 x 2 real matrix
B = { -0.9876   0.4503,
      -0.3043   0.9807 };

// Create a 3 x 2 real matrix
C = { -0.8625   0.5247,
       0.6331  -0.3334,
       0.7912   0.0711 };

// Solve the Sylvester matrix equation
X = sylvester(A, B, C);

After the code above, X will equal the 3x2 matrix:

X =  -0.4279   0.3246
     -1.0525  -0.0013
      1.1609  -0.1071

Complex input#

// Create a 3 x 3 complex matrix
A = { 7 + 7i     4 + 10i     2 + 8i,
     10 - 3i    -7 -  5i   -10 - 7i,
      3 + 5i   -10 -  2i     2 - 4i };

// Create a 2 x 2 complex matrix
B = { 5 +  1i    -5 - 8i,
      8 - 10i    8 - 1i };

// Create a 3 x 2 complex matrix
C = { -9 - 3i   -1 - 1i,
       9 - 8i   -5 + 8i,
      -1 - 2i   -5 + 5i };

// Solve the Sylvester matrix equation
X = sylvester(A, B, C);

After the code above, X will equal the 3x2 complex matrix:

X =   0.1697 - 0.2242i    -0.5923 + 0.2221i
     -0.5684 + 0.4562i     0.3670 - 0.7153i
     -0.7502 + 0.2470i    -0.0636 - 0.4208i

Remarks#

The equation \(AX + XB = C\) will not have a unique solution if the eigenvalues of the matrices A and -B are equal. In this case an error will be returned.

See also

Functions hess(), schur()