erf, erfc#
Purpose#
Computes the Gaussian error function (erf()
) and its
complement (erfc()
).
Format#
Examples#
// Print 3 digits after the decimal point
format /rd 5,3;
// Assign x
x = { .5 .4 .3,
.6 .8 .3 };
// Compute the Gaussian error function
y = erf(x);
/*
** Compute the complement of the
** Gaussian error function
*/
yc = erfc(x);
After the above code:
x = 0.500 0.400 0.300 y = 0.520 0.428 0.329 yc = 0.480 0.572 0.671
0.600 0.800 0.300 0.604 0.742 0.329 0.396 0.258 0.671
Remarks#
The erf()
and erfc()
functions are closely related to the Normal distribution. Such that:
if \(x > 0\)
cdfn(x) = 0.5 * (1 + erf(x / sqrt(2));
and if \(x \leq 0\)
cdfn(x) = 0.5 * erfc(-x / sqrt(2));