lapgeighv#
Purpose#
Computes generalized eigenvalues and eigenvectors for a pair of real symmetric or Hermitian matrices.
Format#
- { ve, va } = lapgeighv(A, B)#
- Parameters:
A (NxN matrix) – real or complex symmetric or Hermitian matrix.
B (NxN matrix) – real or complex positive definite symmetric or Hermitian matrix.
- Returns:
ve (Nx1 vector) – eigenvalues.
va (NxN matrix) – eigenvectors.
Examples#
// Assign A
A = { 3 4 5,
2 5 2,
3 2 4 };
// Assign B
B = { 4 2 2,
2 6 1,
2 1 8 };
// Find the eigenvalues and corresponding
// eigenvectors of the solution of the
// generalized symmetric eigenproblem
{ ve, va } = lapgeighv(A, B);
print ve;
-0.0425
0.5082
0.8694
print va;
0.3575 -0.0996 0.9286
-0.2594 0.9446 0.2012
-0.8972 -0.3128 0.3118
Remarks#
ve and va are the eigenvalues and eigenvectors of the solution of the generalized symmetric eigenproblem of the form \(Ax = λ B\). Equivalently, va diagonalizes \(U'^{-1}AU^{-1}\) in the following way
\[va*U'^{-1}AU^{-1}*va' = ve\]
where \(B = U'U\). This procedure calls the LAPACK routines DSYGV and ZHEGV.
See also
Functions lapgeig()
, lapgeigh()