beta#
Purpose#
Computes the standard Beta function, also called the Euler integral. The beta function is defined as:
\[B(x, y) = \int_{0}^{1} t^{x−1}(1−t)^{y−1}dt\]
Format#
- f = beta(x, y)#
- Parameters:
x (scalar or NxK matrix) – may be real or complex
y (LxM matrix) – ExE conformable with x.
- Returns:
f (NxK matrix)
Examples#
// Set x
x = 9;
// Set y
y = 3;
// Call beta function
f = beta(x, y);
After the code above:
f = 0.0020202020
Remarks#
The Beta function’s relationship with the Gamma function is:
\[B(x,y) = \frac{\Gamma(x)×\Gamma(y)}{\Gamma(x+y)}\]
See also