lapgsvdcst#
Purpose#
Compute the generalized singular value decomposition of a pair of real or complex general matrices.
Format#
- { C, S, R, U, V, Q } = lapgsvdcst(A, B)#
- Parameters:
A (MxN matrix) – data
B (PxN matrix) – data
- Returns:
C (Lx1 vector) – singular values for A.
S (Lx1 vector) – singular values for B.
R ((K+L)x(K+L)) – upper triangular matrix.
U (MxM matrix) – orthogonal transformation matrix.
V (PxP matrix) – orthogonal transformation matrix.
Q (NxN matrix) – orthogonal transformation matrix.
Remarks#
The generalized singular value decomposition of A and B is
where U, V, and Q are orthogonal matrices (see lapgsvdcst()
and
lapgsvdst()
). Letting K + L = the rank of \(A|B\) then R is a \((K+L)x(K+L)\) upper
triangular matrix, D1 and D2 are Mx(K+L) and Px(K+L) matrices with entries on the diagonal, \(Z = [ 0\; R ]\), and if \(M-K-L \geq 0\)
K L
D1 = K [ I 0 ]
L [ 0 C ]
M - K - L [ 0 0 ]
K L
D2 = P [ 0 S ]
P - L [ 0 0 ]
N-K-L K L
[ 0 R ] = K [ 0 R11 R12 ]
L [ 0 0 R22 ]
or if \(M-K-L \lt 0\)
K M-K K+L-M
D1 = K [ I 0 0 ]
M-K [ 0 0 0 ]
N-K-L K M-K K+L-M
K [ 0 R11 R12 R13 ]
[ 0 R ] = M-K [ 0 0 R22 R23 ]
K+L-M [ 0 0 0 R33 ]
Form the matrix
X = Q [ I 0 ]
[ 0 R^-1 ]
then
where
E1 = [ 0 D1 ]
E2 = [ 0 D2 ]
(3) The generalized singular value decomposition of A and B implicitly produces the singular value decomposition of \(AB^{-1}\):
This procedure calls the LAPACK routines DGGSVD and ZGGSVD.
See also
Functions lapgsvds()
, lapgsvdst()