svd#
Purpose#
Computes the singular values of a matrix.
Format#
- s = svd(x)#
- Parameters:
x (NxP matrix) – matrix whose singular values are to be computed
- Returns:
s (Mx1 vector) – where \(M = min(N,P)\), containing the singular values of x arranged in descending order.
Global Input#
- _svderr#
scalar, if the singular values cannot be computed, _svderr will be nonzero.
Examples#
// Create a 10x3 matrix
x = { -0.60 3.50 0.47,
8.40 16.50 0.27,
11.40 6.50 0.17,
7.40 -0.50 -2.43,
-9.60 -10.50 0.57,
-17.60 -5.50 0.67,
-12.60 -14.50 0.87,
18.40 12.50 -1.43,
-11.60 -19.50 0.77,
6.40 11.50 0.07 };
// Calculate the singular values
s = svd(x);
After the code above, s will be equal to:
49.58
14.96
2.24
Remarks#
Source#
svd.src