clusterSE#
Purpose#
Procedure to compute the White cluster-robust standard errors.
Format#
- vce_cluster = clusterSE(x, grp, resid[, const[, verbose, var_names])#
- vce_cluster = clusterSE(dataset, formula, grp_var, resid[, const, verbose, var_names])
- vce_cluster = clusterSE(dataframe, formula, grp_var, resid[, const, verbose, var_names])
- Parameters:
x (NxK matrix) – independent regression variables, should not include a const.
grp (NTx1 matrix) – vector of group indicators.
resid (NTx1 matrix) –
ols residuals.
Note
if using
olsmt()
these are stored in theolsOut
structure member resid.dataset (string) – name of dataset.
formula (String) –
formula string
of the independent variables. E.g"X1 + X2"
, ‘X1’ and ‘X2’ are names of independent variables;grp_var (string) – name of the group variable.
const (scalar) – Optional input, indicator variable for including a const. 1 for including a const, 0 for no const. Default = 1.
verbose (scalar) – Optional input, 1 to print results, 0 for no printing. Default = 1.
var_names (string array) – Optional input, variable names. Default = X1, X2, …, XK.
ss (Scalar) – Optional input, indicator variable for using the small sample correction. 1 to compute the small sample correction, 0 for no correction. Default = 1.
- Returns:
vce_cluster (KxK matrix) – White cluster-robust variance-covariance matrix.
Examples#
new;
// Load data using auto dataset
fname = getGAUSSHome("examples/regsmpl.dta");
data = loadd(fname);
// Control structure
struct olsmtControl o_ctl;
o_ctl = olsmtControlCreate();
// Turn on to estimate residuals
o_ctl.res = 1;
// Declare output structure
struct olsmtOut o_out;
// Run initial ols
o_out = olsmt(fname, "ln_wage ~ age + age:age + tenure", o_ctl);
This estimates the OLS regression and finds the i.i.d. standard errors:
Valid cases: 28101 Dependent variable: ln_wage
Missing cases: 433 Deletion method: Listwise
Total SS: 6414.965 Degrees of freedom: 28097
R-squared: 0.164 Rbar-squared: 0.164
Residual SS: 5360.440 Std error of est: 0.437
F(3,28097): 1842.448 Probability of F: 0.000
Durbin-Watson: 0.906
Standard Prob Standardized Cor with
Variable Estimate Error t-value >|t| Estimate Dep Var
-------------------------------------------------------------------------------
const 0.333982 0.050441 6.621206 0.000 --- ---
age 0.075217 0.003474 21.653863 0.000 1.054270 0.278922
age:age -0.001085 0.000058 -18.862899 0.000 -0.916788 0.265497
tenure 0.039088 0.000774 50.479037 0.000 0.306895 0.370584
Calling clusterSE()
estimates the cluster-robust standard errors:
// Find cluster-robust standard errors regression includes const
vce_cluster = clusterse(fname, "age + age:age + tenure", "idcode", o_out.resid );
The results:
Total observations: 28101
Number of variables: 4
VARIABLE Clustered SE
-------------------------------------
const 0.064192
age 0.0045711
age:age 7.7846e-05
tenure 0.0014425
-------------------------------------
See also
Functions olsmt()
, robustSE()
, hacSE()