cdfN2#
Purpose#
Computes the Normal cumulative distribution function over the interval between x and x+dx.
Format#
- p = cdfN2(x, dx)#
- Parameters:
x (MxN matrix) – Lower limit at which to evaluate the normal cumulative distribution function.
dx (KxL matrix) – ExE conformable to x, intervals used to compute the upper bound, x + dx.
- Returns:
p (matrix, max(M,K) by max(N,L)) – The normal cumulative distribution function over the interval \(x\) to \(x + dx\), i.e., \(Pr(x < X < x + dx)\)
Examples#
// Starting x
x = 0;
// Interval
dx = 1.96;
// Call the cdfN2
print cdfN2(x, dx);
After the above code:
0.4750021048517795
// Starting x
x = 1;
// Interval
dx = 0.5;
// Call the cdfN2
print cdfN2(x, dx);
After the above code:
9.1848052662599017e-02
// Starting x
x = 20;
// Interval
dx = 1e-2;
// Call the cdfN2
print cdfN2(x, dx);
After the above code:
5.0038115018684521e-90
// Starting value
x = { 0 0.25 1 -2 -1,
1 0 0.4 2.3 1,
3 1 0.9 0.4 0.1 };
dx = { 0.5, 1.4, 2 };
print cdfN2(x, dx);
After the above code:
0.1915 0.1747 0.0918 0.0441 0.1499
0.1505 0.4192 0.3086 0.0106 0.1505
0.0013 0.1573 0.1822 0.3364 0.4423
Remarks#
The relative error is:
\(\left| x \right| \leq 1\) and \(dx \leq 1\) |
\(\pm 1e-14\) |
\(1 < \left| x \right| < 37\) and \(\left| dx \right| < \frac{1}{\left| x \right|}\) |
\(\pm 1e-13\) |
\(min(x, x + dx) > -37\) and \(y > 1e-300\) |
\(\pm 1e-11\) or better |
A relative error of \(\pm 1e-14\) implies that the answer is accurate to better than \(±1\) in the 14th digit.
See also
Functions lncdfn2()