besselk#
Purpose#
Computes the modified Bessel function of the second kind, \(K_n(x)\).
Format#
- besselk(n, x)#
- Parameters:
- n (scalar or matrix) – order. Currently only integer orders are supported. 
- x (scalar or matrix ExE) – conformable with n. x must be greater than 0. 
 
- Returns:
- K (scalar or matrix) – the modified Bessel function result. 
 
Examples#
Basic usage#
x = { 0,
    0.5,
      1,
    1.5,
      2 };
K = besselk(1, x);
After the above code, K, should equal:
+INF
1.6564411
0.60190723
0.27738780
0.13986588
Compute data for first 3 orders#
// Row vector of orders, 'n'
n = { 0 1 2 };
// Column vector 'x'
x = { 0,
    0.5,
      1,
    1.5,
      2 };
// Compute function for each order, 'n', at all 'x' points
K = besselk(n, x);
After the code above, K should equal:
+INF             +INF             +INF
0.92441907       1.6564411        7.5501836
0.42102444       0.60190723       1.6248389
0.21380556       0.27738780       0.58365596
0.11389387       0.13986588       0.25375975
Remarks#
Currently the algorithm has the following limitations:
- The order, n, must be an integer. 
- The values of x must be positive. 
- The maximum supported value for x with an order greater than 1 is limited to approximately 740. If the input is out of range, a NaN (missing value) will be returned. If necessary, use the function - ismiss()to check for NaN’s in the output.
See also
Functions bessely(), mbesseli(), besselj()
