besselk#
Purpose#
Computes the modified Bessel function of the second kind, \(K_n(x)\).
Format#
- besselk(n, x)#
- Parameters:
n (scalar or matrix) – order. Currently only integer orders are supported.
x (scalar or matrix ExE) – conformable with n. x must be greater than 0.
- Returns:
K (scalar or matrix) – the modified Bessel function result.
Examples#
Basic usage#
x = { 0,
0.5,
1,
1.5,
2 };
K = besselk(1, x);
After the above code, K, should equal:
+INF
1.6564411
0.60190723
0.27738780
0.13986588
Compute data for first 3 orders#
// Row vector of orders, 'n'
n = { 0 1 2 };
// Column vector 'x'
x = { 0,
0.5,
1,
1.5,
2 };
// Compute function for each order, 'n', at all 'x' points
K = besselk(n, x);
After the code above, K should equal:
+INF +INF +INF
0.92441907 1.6564411 7.5501836
0.42102444 0.60190723 1.6248389
0.21380556 0.27738780 0.58365596
0.11389387 0.13986588 0.25375975
Remarks#
Currently the algorithm has the following limitations:
The order, n, must be an integer.
The values of x must be positive.
The maximum supported value for x with an order greater than 1 is limited to approximately 740. If the input is out of range, a NaN (missing value) will be returned. If necessary, use the function
ismiss()
to check for NaN’s in the output.
See also
Functions bessely()
, mbesseli()
, besselj()