lapsvds#
Purpose#
Computes the singular values of a real or complex rectangular matrix
Format#
- s = lapsvds(x)#
- Parameters:
x (MxN matrix) – real or complex rectangular matrix.
- Returns:
s (min(M,N)x1 vector) – singular values.
Examples#
// Assign x matrix
x = { 2.143 4.345 6.124,
1.244 5.124 3.412,
0.235 5.657 8.214 };
// Compute the singular value decomposition
va = lapsvds(x);
print va';
13.895868 2.1893939 1.4344261
// Assign xi
xi = { 4+1 3+1 2+2,
1+2 5+3 2+2,
1+1 2+1 6+2 };
// Compute the singular value decomposition
ve = lapsvds(xi);
print ve';
10.352877 4.0190557 2.3801546
Note the transpose operator ('
) at the end of the print statements. This causes the output of these column vectors to be printed as a row vector.
Remarks#
lapsvds()
computes the singular values of a real or complex rectangular
matrix. The SVD is
x = usv'
where v is the matrix of right singular vectors. For the computation of
the singular vectors, see lapsvdcusv()
and lapsvdusv()
.
lapsvds()
is based on the LAPACK drivers DGESVD and ZGESVD. Further
documentation of these functions may be found in the LAPACK User’s Guide.
See also
Functions lapsvdcusv()
, lapsvdusv()