chiBarSquare#
Purpose#
Compute the probability for a chi-bar square statistic from an hypothesis involving parameters under constraints.
Format#
- SLprob = chiBarSquare(SL, cov, a, b, c, d, bounds)#
- Parameters:
SL (scalar) – chi-bar square statistic
cov (KxK matrix) – positive covariance matrix
a (MxK matrix) – linear equality constraint coefficients
b (Mx1 vector) –
linear equality constraint constants. These arguments specify the linear equality constraints of the following type:
\[a * X = b\]where x is the \(Kx1\) parameter vector.
c (MxK matrix) – linear inequality constraint coefficients.
d (Mx1 vector) –
linear inequality constraint constants. These arguments specify the linear inequality constraints of the following type:
\[c * X \leq d\]where x is the \(Kx1\) parameter vector.
bounds (Kx2 matrix) – bounds on parameters. The first column contains the lower bounds, and the second column the upper bounds.
- Returns:
SLprob (scalar) – probability of SL.
Examples#
// Covariance matrix
V = { 0.0005255598 -0.0006871606 -0.0003191342,
-0.0006871606 0.0037466205 0.0012285813,
-0.0003191342 0.0012285813 0.0009081412 };
// Chi-bar square statistic
SL = 3.860509;
// Bounds on parameters
bounds = { 0 200, 0 200, 0 200 };
// Covariance
vi = invpd(V);
SLprob = chiBarSquare(SL, vi, 0, 0, 0, 0, bounds);
After running above code,
SLprob = 0.10885000
Remarks#
See Silvapulle and Sen, Constrained Statistical Inference, page 75 for further details about this function. Let
where V is a positive definite covariance matrix. Define
C is a closed convex cone describing a set of constraints. ChiBarSquare()
computes the probability of this statistic given V and C.
Source#
hypotest.src