vcm, vcx#
Purpose#
Computes an estimate of a variance-covariance matrix.
Format#
- vc = vcm(m[, ddof])#
- vc = vcx(x[, ddof])#
- Parameters:
m (KxK moment (\(x'x\)) matrix) – A constant term MUST have been the first variable when the moment matrix was computed.
x (NxK matrix) – data
ddof (Scalar) – Optional input, delta degrees of freedom. The divisor will be \((N - ddof)\). Default = 1 (sample covariance matrix).
- Returns:
vc (KxK variance-covariance matrix) – an estimate of the variance-covariance matrix.
Examples#
Compute covariance matrices from a data matrix, \(x\).
x = { 2 3,
3 0,
4 4,
1 2 };
// Compute the sample covariance matrix
vcs = vcx(x);
// Compute the population covariance matrix
vcp = vcx(x, 0);
// Compute the sample covariance matrix
vcs2 = vcx(x, 1);
After the above code:
vcs = 1.6666667 0.5000000
0.5000000 2.9166667
vcp = 1.2500000 0.3750000
0.3750000 2.1875000
vcs2 = 1.6666667 0.5000000
0.5000000 2.9166667
Compute covariance matrices from a moment matrix, \(x'x\).
// Create matrix with a constant
x = { 1 2 3,
1 3 0,
1 4 4,
1 1 2 };
// Compute moment matrix
m = x'x;
// Compute the sample covariance matrix
vcs = vcm(m);
// Compute the population covariance matrix
vcp = vcm(m, 0);
// Compute the sample covariance matrix
vcs2 = vcm(m, 1);
After the above code:
vcs = 1.6666667 0.5000000
0.5000000 2.9166667
vcp = 1.2500000 0.3750000
0.3750000 2.1875000
vcs2 = 1.6666667 0.5000000
0.5000000 2.9166667
Source#
corr.src
See also
Functions momentd()