dropCategories#

Purpose#

Removes categories from a dataframe variable. Resets the keyvalues and labels for the variable.

Format#

df = dropCategories(X, categories[, column])#
Parameters:
  • X (NxK dataframe) – Data with metadata.

  • categories (String or string array) – The categories to be removed.

  • column (Scalar or string) – Optional argument, name or index of the categorical variable in X which contains categories to be removed. Must be specified if X contains more than one column. Default = 1.

Returns:

df (NxK dataframe) – Data with specified categories removed.

Examples#

// Load data
fname = getGAUSSHome("examples/yarn.xlsx");
yarn = loadd(fname, "cat(yarn_length) + cat(amplitude) + cat(load) + cycles");

// Get column labels for yarn_length
labels = getCategories(yarn, "yarn_length");

print labels;

The code above prints the following table of original labels:

categories
      high
       low
       med

Using the frequency() function, we can see that the yarn_length column contains 9 observations of each category:

print frequency(yarn, "yarn_length");
Label      Count   Total %    Cum. %
 high          9     33.33     33.33
  low          9     33.33     66.67
  med          9     33.33       100
Total         27       100

Now, use dropCategories() to drop the "high" category and reprint the labels.

// Drop the "high" category
yarn = dropCategories(yarn, "high", "yarn_length");

// Get updated column labels
labels = getCategories(yarn, "yarn_length");

print labels;

The code above prints the following table of updated labels:

categories
       low
       med

Additionally, this time when we print the frequency report, we can see that the observations where yarn_length was equal to "high" have been removed.

print frequency(yarn, "yarn_length");
Label      Count   Total %    Cum. %
  low          9        50        50
  med          9        50       100
Total         18       100