rndBernoulli#
Purpose#
Computes Bernoulli distributed random numbers.
Format#
- r = rndBernoulli(r, c, prob)#
- { r, newstate } = rndBernoulli(r, c, prob, state)
- Parameters:
r (scalar) – number of rows of the output matrix.
c (scalar) – number of columns of the output matrix.
prob (scalar) – probability parameter.
state (scalar or opaque vector) –
Optional argument.
scalar case
state = starting seed value only. If -1, GAUSS computes the starting seed based on the system clock.
opaque vector case
state = the state vector returned from a previous call to one of the
rnd
random number functions.
- Returns:
r (RxC matrix) – Bernoulli random numbers.
newstate (Opaque vector) – the updated state.
Examples#
// Bernoulli random numbers can be used to model qualitative
// binary data (i.e., yes/no, true/false), such as marital
// status.
// Set the random seed for repeatable numbers.
rndseed 723940439;
// The percentage of married people in the population we
// would like to model.
prob = 0.7;
// Create 10,000 Bernoulli random numbers
r = rndBernoulli(10000, 1, prob);
// The mean of 'r' should approximately equal 'prob'
mu = meanc(r);
print mu;
0.70270000
Remarks#
The properties of the pseudo-random numbers in x are:
\[ \begin{align}\begin{aligned}E(X) = prob\\Var(X) = prob * (1 - prob)\end{aligned}\end{align} \]
See also
Functions rndMVn()
, rndCreateState()