cdfBvn2e#
Purpose#
Returns the bivariate Normal cumulative distribution function of a bounded rectangle.
Format#
- { y, e } = cdfBvn2e(h, dh, k, dk, r)#
- Parameters:
h (Nx1 vector) – starting points of integration for variable 1.
dh (Nx1 vector) – increments for variable 1.
k (Nx1 vector) – starting points of integration for variable 2.
dk (Nx1 vector) – increments for variable 2.
r (Nx1 vector) – correlation coefficients between the two variables.
- Returns:
p (Nx1 vector) – the integral over the rectangle bounded by h, h + dh, k, and k + dk of the standardized bivariate Normal distribution.
e (Nx1 vector) – an error estimate.
Examples#
Example 1#
// Starting point of integration for variable 1
h = 1;
// Increments for variable 1
dh = -1;
// Starting point of integration for variable 2
k = 1;
// Increments for variable 2
dk = -1;
// Correlation coefficient
rho = 0.5;
print cdfBvn2e(h, dh, k, dk, rho);
After running the above code,
1.4105101488974692e-001
1.9927918166193113e-014
Example 2#
print cdfBvn2e(1,-1e-15,1,-1e-15,0.5);
After running the above code,
7.3955709864469857e-032
2.8306169312687801e-030
Example 3#
print cdfBvn2e(1,-1e-45,1,-1e-45,0.5);
After running the above code,
0.0000000000000000e+000
2.8306169312687770e-060
Remarks#
Scalar input arguments are okay; they will be expanded to Nx1 vectors.
cdfBvn2e()
computes:
cdfBvn(h + dh, k + dk, r) + cdfBvn(h, k, r) - cdfBvn(h, k + dk, r) - cdfBvn(h + dh, k, r)
The real answer is \(y ± e\). The size of the error depends on the input arguments.
See also
Functions cdfBvn2()
, lncdfbvn2()