svd1#
Purpose#
Computes the singular value decomposition of a matrix so that: \(x = u * s * v'\).
Format#
- { u, s, v } = svd1(x)#
- Parameters:
x (NxP matrix) – matrix whose singular values are to be computed
- Returns:
u (NxN matrix) – the left singular vectors of x.
s (NxP diagonal matrix) – contains the singular values of x arranged in descending order on the principal diagonal.
v (PxP matrix) – the right singular vectors of x.
Examples#
// Create 6x3 matrix
x = { -9.35 15.67 -41.75,
-13.55 40.97 15.55,
-0.95 -17.03 40.15,
8.15 -9.73 13.15,
2.35 -36.73 -43.55,
13.35 6.87 16.45 };
// Perform matrix decomposition
{ u, s, v } = svd1(x);
After the code above, the outputs will have the following values;
u = 0.44 -0.49 -0.06 0.36 -0.24 0.61
-0.35 -0.60 -0.28 0.12 0.65 -0.08
-0.41 0.46 -0.53 0.07 0.03 0.58
-0.12 0.25 0.24 0.91 0.08 -0.18
0.67 0.35 -0.13 -0.02 0.64 0.05
-0.23 0.04 0.75 -0.17 0.33 0.50
s = 79.03 0.00 0.00
0.00 60.19 0.00
0.00 0.00 17.16
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
v = -0.02 0.26 0.97
-0.32 -0.91 0.24
-0.95 0.31 -0.10
Remarks#
svd1()
is not thread-safe. New code should usesvdusv()
instead.Error handling is controlled with the low bit of the trap flag.
trap 0 |
set _svderr to a non-zero value and terminate with message |
trap 1 |
set _svderr to a non-zero value and continue execution |
Source#
svd.src